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Thermal Power Plants
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Agenda: Thermal Power Plants
• Operational principle of cyclic thermodynamic engines

 Entropy, heat, and work in Carnot cycle 

• Reciprocating (piston) engines
 Steam cylinder
 Otto internal combustion cycle
 Stirling engine

• Steam power plants
 Isotherms of real gases
 Steam and air as working media
 S-T cycles for Carnot, Rankine, and Brayton cycles

• Gas turbine power plants
 Combined-cycle plants

• Chemistry of complete & incomplete combustion
 Examples

• Carbon (CO2) capture processes

________________________________

Next: Power from nuclear transmutation
Andrew & Jelley Chs. 9 & 10



Uniflow Steam Cylinder

Linear motion is converted via 
excentric lever on crank wheel. 
produced by geared rotational 
motion, sustained by inertia.

W. Udo Schröder, 2024

T
h
e
rm

al
 P

PT
3

Steam Steam

Poppet ValvePoppet Valve

Poppet valves 
connected to piston 
via levers or rotating 
crank shaft steer 
steam inlet and 
exhaust outlet.

Red   = path closed
Green= path open

https://commons.wikimedia.org/wiki/File:Uniflow_
steam_engine.gif

Exhaust Valve



Early Steam Engines (America's Centennial Exposition 1876)

America's Centennial 
Exposition,         → → →

held in Philadelphia in 1876

The pictured steam engine 
powered all machines and devices 
in the exhibition. It was operated 
by a single engineer. W=1,400 hp
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American made 
Corliss steam engine 
at the Philadelphia 
exhibition.

Eye witness account:
“It stood in excess of forty-five 
feet above the floor and has 
cylinders of forty-four inches in 
diameter with a ten foot stroke. 
Another characteristic is the 
huge fifty-six ton, thirty feet in 
diameter, and twenty-four inch 
face, flywheel which made up to 
thirty-six revolutions per 
minute.” (McCabe)

George H. Corliss. 
Inventor, Providence, RI



Ideal Otto Cycle

W. Udo Schröder, 2024

T
h
e
rm

al
 P

PT
5

1) Intake stroke ( 1→2 ), gasoline vapor and air drawn into engine.

2) Compression stroke (2→3) . p,T increase. 

3) Combustion (spark) (3→4), short time, V= constant. Heat 

absorbed from high-T “reservoir”. 

4) Power stroke: expansion (4→5).

5) Valve exhaust: Valve opens, gas can escape.

6) Emission of heat (5→6) to low-T reservoir.

7) Exhaust stroke (2→1), piston evacuates cylinder.

     Needs engine starter !

crank 
shaft

cams

fly 
wheel

fuel 
injectionexhaust



Energetics of Otto Cycle
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Agenda: Thermal Power Plants

• Operational principle of cyclic thermodynamic engines
 Entropy, heat, and work in Carnot cycle 

• Reciprocating (piston) engines
 Steam cylinder
 Otto internal combustion cycle
 Stirling engine

• Steam power plants
 Isotherms of real gases
 Steam and air as working media
 S-T cycles for Carnot, Rankine, and Brayton cycles

• Gas turbine power plants
 Combined-cycle plants

• Chemistry of complete & incomplete combustion
 Examples

• Carbon (CO2) capture processes

________________________________

Next: Power from nuclear transmutation
Andrew & Jelley Chs. 9 & 10
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Coal Power Plant (Photo & Schematic)

Modern coal power plant: 3-7 GWth.
Two turbines in tandem working with 
reheated steam. Practical for T<700 0C. 
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Real Substances (Different Phases: s, , g, sc)

---Maxwell Construction

p V n R T   

5000C

H2O Equation of State

All real substances have distinct physical phases: 
  solid (T<Tfreeze), liquid (Tfreeze<T< Tboil) and gas (Tboil<T)
Phase transitions occur upon changes in internal energy by characteristic 
amounts: latent heat (-enthalpy) of fusion or latent heat of vaporization 
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Using Real Gases/Vapor Working Media

Since 150 years practical use: steam = water vapor, water droplets (wet steam). 
→ Real gas molecules interact more, motion is less free, depending on , T. 
→ Several phases. 
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Virial expansion

T

compres a
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EoS non-monotonic → liquid-gas instability. 

High compression: real (vdW model) gases 
collapse (p decreases with decreasing V) 
→ liquefaction

 Correct EoS for unphysical instability: 
            Maxwell Construction
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Steam Tables

p = 1 bar= 101.33 kN/m2 

Water 00C → 1000C. 
→ 419 kJ/kg  

→ Specific enthalpy H2O: 
hwater(1000C) = 419 kJ/kg.

Specific enthalpy of 
evaporation (latent heat): 
hevap(1000C) =2,257kJ/kg 

hsteam(1000C)=2.676MJ/kg

Latent Heat
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Steam Tables/P-H Graphs

x=0 →100% water,  x=1  →  100%  steam
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Water as a Working Power Medium 

To use steam as driving gas for thermal 
engines, heat energy has to be transferred 
to water at Tl (e.g., 250C)

Heat transfer
T=const

Liquid

Phase Diagram H2OT

S
After Andrews & Jelley

p = 1 atm (bar)= 101.33 kN/m2 
 → Water boils @ at 1000C
 → Need 419 kJ/kg H2O to heat water 

from 00C to T= 1000C.

→ @ p=101.33 kN/m2 and 1000C 
Specific enthalpy H2O: 
           hwater(1000C) = 419 kJ/kg.

Specific enthalpy of evaporation (latent 
heat): hevap(1000C)= 2,257 kJ/kg 
          (not applicable to ideal gas)

Total heat required at p=const. to convert H2O to steam @1000C : 

hsteam(1000C) = (419 + 2,257)kJ/kg = 2,676 kJ/kg = 2.676 (MJ/kg) = 0.74 kWh/kg

L-G mixture hs (x) = (1-x)· hwater + x· hsteam                 Extensive variables

Similar:             us(x) = (1-x)·uwater + x· usteam  (U, H, S,..)

0x =

0x = 1x =

1x =

A) heat 1mol liquid H2O to 1000C
B-C) evaporate all H2O (@ 1000C) 
D) heat vapor beyond 1000C→Th  

S q·T

Liquid Gas

B C
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S-T Diagram for Steam Carnot Process

Enthalpy, entropy extensive→ Scale w/ x

T1

T2< T1
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Carnot cycle: highest possible work output per q for 
T=const. processes.
Works well for ideal gases (simple molecules, high T)

Disadvantage for real gases and moderate T, because 
phase coexistence region limits gas Th per qin

q= T∙S in Carnot process, i.e., Th is limited → low 

Rankine cycle: (Thermodynamically robust)

e→ f Compressor (pump) injects H2O under p 
f → a Economizer heats H2O under pressure.
a→ b Evaporator boils H2O under p = const.
b→ c Superheater heats steam @high p = const.
c→ d Turbine produces work, expands steam 

d→ e  condenser liquifies vapor @ p < pat. 

Heating and cooling occur at p=const.

Efficiency:
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Rankine Steam Cycle

T

S

T

S
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Low/Medium Pressure Steam Turbines
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Agenda: Thermal Power Plants

• Operational principle of cyclic thermodynamic engines
 Entropy, heat, and work in Carnot cycle 

• Reciprocating (piston) engines
 Steam cylinder
 Stirling engine
 Otto internal combustion cycle

• Steam power plants
 Isotherms of real gases
 Steam and air as working media
 S-T cycles for Carnot, Rankine, and Brayton cycles

• Gas turbine power plants
 Gas turbine operation, enthalpy balance 
 Combined-cycle plants

• Chemistry of complete & incomplete combustion
 Examples

• Carbon (CO2) capture processes

________________________________

Next: Power from nuclear transmutation
Andrew & Jelley Chs. 9 & 10
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Gas Power Turbine: Parts & Operation (GE)

Air intake at turbo 
compressor stage.
Fuel/air mix injected 
in annular combustion 
chambers.
Combustion gas 
drives turbine power 
stage (4).  

Turbo compressor 
raises air pressure 
(x20) & temperature.

Fuel/air mix is ignited 
in combustion 
chambers. → Super 

heated compressed 
fuel/air mix drives 
power rotors. Hot gas 
exhaust.

Combustion 

Chamber

Compressor 

Stage

Power Stage Exhaust Nozzle

Shaft

In Operation
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Angular Momentum Transfer in Turbines

Angular momentum to turbine (runner) by driving gas

; ;
T in ou T Tt

L L L Torque M L t Power P M = =  − =  

( ) ( )T m in out
P Q r u r u

⊥ ⊥
 =      −   Euler’s Turbine Equation

Driving gas is injected coaxially → brings in zero torque about 

rot axis. Power is maximized if exhaust gas carries maximum  

momentum perpendicular to rot axis → coaxial inflow & radial 

outflow.

Turbine power depends on power blade geometry/angle of 

attack → Task: maximize angular momentum transfer      !

( )max T out
P m R u

⊥
=    

( ),
out

R injection radius for turbine u gas velocity perp to axis
⊥

= =

High power produced by large turbines: high coaxial gas 
injection + radial outflow.

T
L

( )
in

in

u

u=

r
⊥

out
u

𝛺𝑇

R( )out
u

⊥

( )out
u

090

090

Rotor Blade
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375 MW: presently most powerful

Gas Power Turbine (Siemens)
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Turbine for Gas Power Plants

SGT-800 Power generation 
47.00MW(e)
Fuel: Natural gas*, Frequency: 
50/60Hz
Electrical efficiency: 37.5%
Heat rate:   9,597kJ/kWh       

(9,096Btu/kWh)
Turbine speed: 6,608rpm
Compressor pressure ratio: 19:1
Exhaust gas flow: 131.5kg/s 
Exhaust temperature: 544°C (1,011°F)
NOx emissions (with DLE, corrected to 
15% O2 dry): ≤ 15ppmV

Available for different power 
outputs (5-375 MW), revolutions 
3,000-17,000 rpm, 50/60 Hz 
electric.
Efficiencies 0.35- 0.60
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Combined Cycle Power Plants (CCGT)

Primary Stage

Secondary Stage W2

W1

Q2

Q1

Air

E
x

h
au

st

Water E
x

h
au

st

W1

W2

Q1

Q2
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Combined Cycle Power Plants (CCGT)
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General Electric Combined-Cycle Power Plant



W. Udo Schröder, 2024

T
h
e
rm

al
 P

PT
2

5

Brayton/Joule Open Turbine Cycle

Open cycle (Jet engine):
a-b Compression (x 10-30), adiabatic q=0
b-c Combustion (p=const.) 
c-d Turbine, adiabatic (q=0), wt ≠ 0
d-a Exhaust waste energy (p=const.) 
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Turbine exhaust still very hot → use again
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Advanced materials, titanium-aluminide 
on turbine blades, composites + Ti on 
fan blades, By-pass ratio 9.6:1.
Thrust up to 75,000 lbf (330 kN)

Aircraft Turbo Fan Engine

Counter-rotating 
compressor/fan 
turbines, combustion 
(twin swirlers). 

../assets/VIDEOS/GEnx_TurboFan_Engine.mp4
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Rolls Royce Aircraft Turbofan Engine

RB211-535E4

Thrust SLS, 40,100lb (ISA +14˚C)  
43,100lb (ISA +10˚C)
Bypass ratio 4.3, 
Inlet mass flow 1177lb/sec 
Fan dia 74.1” Length 117.9”
RB211-535E4 (Boeing 757) 
Certification Nov 1983 EIS Oct 1984
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