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Agenda

Resources and Utilization

• Global & local wind resources/patterns

Technology

• Wind tower design and functionality

– Wind speed distributions

– Blade aerodynamics, lift and drag, wake turbulence

– Turbine power generation, design parameters

Technical Summary

• Wind farms, design and operations 

– Onshore and offshore windfarms, useful life

– Construction parameters, cost, GHG emissions 
 

Wind power in national energy mix

• Global and U.S. wind power: Status and outlook 

– Installations, prospects for NetZero

• Strategic issues

– Performance, ecological impact,… 
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Reading Assignments
A&J 4.1-4.4
A&J 6.1-6.13
LN 3.2
Next
A&J 5.1-5.7 (Hydropower)



Air Resistance/Parasitic Drag
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Aerodynamic Power Transfer
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Aerodynamic Power Transfer
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Operational Turbine Power Limits
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After: Fay & Golomb, Energy and the Environment, 
Oxford U. Press, New York, 2012

Operational range of turbines

       ucut-in≤ uWind ≤ ucut-out

Large range is not economical: electric generator has 
rotational (power output, frequency) requirements 
and limitations.
→  Rated (nominal) wind speed urated ≈ ucut-out/2
→  Blades pitch (feather) if uwind  > 2·urated.

Capacity factor CF:=<Power>time/Powerrated.

Typical: CF ≈ 0.2-0.4
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Technical Summary:  Design of Wind Rotor Blades
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Construction of Alpha Ventus
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North Sea, depth= 30 m, 45km 
north of Borkum/Germany. 

EWE AG, E.ON Climate & 
Renewables, and Vattenfall 
Europe Windkraft.

Tripods/towers (45m, 700 t steel) 
for mounting (12) off-shore 
AREVA/REpower wind turbines. 

Hub+blade height 148/185 m.

 

Installation of 12 towers=7 months (2009). 

Limited number of specialized barges.

Weight of 1 tower: 1,000 t

Tip speed (rated) 320 km/h



Installing Tower Foundations
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Construction of Alpha Ventus
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Construction of Alpha Ventus
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AREVA Wind Towers for Alpha Ventus
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12 turbines @ 5 MW rated,
produced 265 MWh in 2011.

Rotor diameter: 116 m 
Hub height: 90 m 

Total height above seabed: 178 m 
Total above sea surface: 148 m 

Rated output: 5 MW 
Rotation speed: 5.9 - 14.8 rpm 

Cut-in wind speed: 3.5 m/s (force 3) 
Rated speed: 12.5 m/s (force 6) 
Cut-out speed: 25 m/s (force 10) 

Blade tip speed: 90 m/s (324 km/h) 

Nacelle w/o rotor & hub: 200 t 
with rotor and hub: 309 t 

Weight of steel in tripod, tower, 
nacelle: 1,000 t 

Tripod - weight of steel: 700 t; 

Height: 45 m; Pile length: 35-45 m 



Layout of Wind Farm
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Feb 2013



Angular Momentum and Wake Turbulence 
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Angular momentum conservation
→ Wake acquires swirl (vortex)

0 Wind Rotor WakeL L L= = +

Distance between 2 turbines in column D ≥ (8-10) rotor diameters

Image Credit: Vattenfall
http://www.noaanews.noaa.gov/stories2011/20110426_windwakes.html

../assets/VIDEOS/Kattegat-WIndfarm SHOW.mp4


Converter Station for Alpha Ventus
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From turbine 30 kV → 110 kV, 75 MVA 
transformer (AREVA). 
Position: N 54°00', E 6°37.40'
Constructed in September 2008

30 m: elevation of helipad
25 m: elevation of main deck with crane, 
substation control and protection (I&C)/switch-
gear plant/neutral earthing transformer, fire 
extinguishing system, MV and LV 
systems, emergency generator,
 
MVAr throttle / 110 kV GIS (gasinsulated 
switchgear) system (AREVA)

21 m: cable deck with workshop, 
equipment room, lounge, diesel 
tanks, emergency generator, cable bench and oil 
sump

Cable deck and main deck: 
Jacket foundation height: approx. 46 m
Jacket weight: approx. 650 t

Foundation piles: 30 m long, 2.7 m
diameter, 100 t apiece

To get the power from off-shore wind 
farms to land, submarine cables (18cm 
dia, 110 kV HVDC) are used . 

Distances are between 10 and 200 km.

Delays in developing technology and 
manufacturing equipment needed to get 
the power to shore.



Windfarms: Useful Lifetime
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From: Gordon Hughes, The Performance of Wind Farms in the 
United Kingdom and Denmark

Limited experience from US, Danish and 
German wind farms.

Onshore wind farms have low-capacity 
factors but also low maintenance & 
operational costs and long (30+ year) 
useful life expectancy.

Off-shore wind farms have higher 
capacity factors but high operational 
costs, limited useful life expectancy, due 
to harsh environment.

Early Danish experiences with off-shore 
wind farms: 80 turbines needed 
replacement in one year.

Danish off-shore wind farms
Life



U.S. Electrical Power Plants (Wind)
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High rate of installations 2011-2020,
Recent global slow-down.
US 2020: total installed 123 GW. US 
2022: total installed 143 GW.



Annual U.S. Electricity Production
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TWh

US 2022 GWh Source

4.21E+05 Wind

2.39E+05 Solar

2.45E+05 Hydroelectric

7.75E+05 Nuclear

1.81E+06 Nat. Gas

6.75E+05 Coal

4.18E+06 All

Annual Energy Outlook  AEO2023 
U.S. Energy Information Administration 
https://www.eia.gov/electricity/data/browser/



Clean Energy Potential For Decarbonization
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Stated Energy Policy Scenarios (STEPS) provides an outlook based on the latest policy settings, 
including energy, climate and related industrial policies.

1

5

10

DOE: US wind settles at 7%; 2021-2030: +3GW/a; 2031-2050: +8GW/a 



Wind Power: Strategic Issues

W. Udo Schröder, 2024

W
in

d
 P

ow
e
r 

2
3

• Intermittency, lacking effective energy storage @scale, CF≈0.3. 
Mis-matched to demand & e-grids, over and under production.
Need continuous idle backup (baseload) power (> 100% nominal). 

• Scalability: Low power density of wind energy resources, ≈3W/m2
→ eco 

footprint ~(102 -103)km2/GW soil/arable land.

• Environmental effects:  Habitat degradation/destruction. Visual & audio 
pollution (stroboscopic flicker, audio effects), ice throw. Endangering/ 
degrading biomass: bird/bat kill 2-3/(turbine & year). Insects (Germany: 
Mt/a), relatively unknown habitat effects.

• Efficiency of generation & transmission: operations/maintenance, limited 
life (<30a). Distance generation-consumption centers, transmission power 
losses, land for power lines.
 

• Dependence on critical minerals, metals
Large amounts of cement/steel, other resources.          

• Lack of domestic manufacturing basis for scaling x(5-10) deployment, lack 
of skilled manpower, special equipment for off-shore.

• Economics: High cost of financing, long time to license & build. Special 
barges for off-shore installation, expensive maintenance.

• Public attitudes mixed. NIMBY, high power transmission lines.



Wind Energy: Levelized Cost of Electricity
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Connection and utilization 
costs of variable energy 
sources depend on penetration 
(%) of total market

Estimates of plant-level costs for renewable power 
generation technologies at capital costs of 3%, 7% and 
10%. (IEA/NEA, 2015, Total cost of energy)



Wind Farm Construction Materials and Emissions
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Global warming effect MT metric ton CO equivalent

with M amount of GHG GWP global warming potential for time horiz

GWE M GW

on TH years
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= = =

= 

2.7 GW installed, CF=0.24

Currently, construction, operation & maintenance of wind farms require non-renewable 
energy inputs, renewable: fuel=wind, solar.  

Cost of only materials. Includes no labor, installation or maintenance costs.
S. Pacca & A. Horvath, Environ. Sci. Technol 36, 3194 (2002)  



Electricity Demand and Supply (Example Germany)
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Nat Gas

Coal

time

Power/GW  Actual Data 2020

Weekly Demand Variations 2020: 27,000 turbines.

Produced electricity can only
partially be fed into grid 
(over-production→export). 

Study by Fraunhofer IWES 
Institute for Wind Energy 
and Energy Systems 
Technologies (Kassel/ 
Germany). Conclusion for 
Germany: Present 
conventional power can 
partially (40%) be replaced 
by renewable (wind/solar) 
production 

Power export in EU is limited, 
except for Denmark 
(intermediate storage in 
Norwegian hydro reservoirs)

2023: Nuclear power ramp 
down.

20GW normal range of traditional nuclear power

Over generation by renewable power



Wind Farms: Accidents in Perspective

→ Wind farms had only minor accidents, few fatalities.
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Employment in Renewable Energy Sector
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Political vs economic considerations: 
High labor intensity is of interest to local politics, but also constitutes 
disadvantage in economic competition. 

Quality of the labor: higher qualification of the work-force → longer duration 
of the employment → higher long-term positive externalities.

Many energy sector 
jobs are not co-local 
(engineering, design, 
financing, transient 
maintenance). 

Non-specific, i.e., 
management, 
marketing,  personnel 
can be interchanged.

Most local employment 
is during installation
200MW ➔ 500 workers



Wind Related Failures
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High-wind rotor failures  
Gale winds (~100mph) in England and 
Scotland in 2012.
Material fatigue after 10 years’ operation ?

http://www.dailymail.co.uk/news/article-
2083149/Wind-turbines-cope-UK-weather-3-
blown-pieces.html

Blade icing if ambient/dew point 

temperature < (30-40)C  

Ice throws due to blade flexing



Effect on Wildlife
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Newsweek:2007 study by the National 
Academy of Sciences puts the number of 
birds killed each year at about 20,000 to 
30,000. The American Bird Conservancy 
estimates about 80,000 to 220,000 bird 
fatalities per annum, due to wind power. 
Read Birds vs. the Wind Industry.

Relative risk is small (kills by other means), can be reduced further..

http://www.newsweek.com/id/211734?from=rss
http://www.newsweek.com/id/211734?from=rss


Pro/Con: Avoided GHG Emissions @ Price
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Estimated CO2 equivalent needed for 
construction of infrastructure for a 1GW wind 
farm is 1.2∙106 t CO2. For CF=1.0, GHG 
emission is lower
than for hydro-electric generation.

(S. Pacca& A. Horvath, Environ. Sci. Technol. 36, 
3194 (2002))

U.S. Residential: 8-15¢/kWh 

26-30¢/kWh 

Industrial Residential

P
ri

c
e
 €

/M
W

h

10-13¢/kWh 

Germany: 
electricity price app.=$/MWh



Effect on Ecosystem: Insect Population

Change of insect density at rotor altitudes → endangered biomass since 

1990 in 2 model simulations (Gerz&Geiger, Energiewirt. Tagesfrg. 68, 51 (2018))

Insect fatalities (est.): (5-6)·109/day → 1,200 Mt/a  (5% of interactions)
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Consequences for ecosystem: diminished pollination of plants, effect on crops, 
elimination of insect biomass from food chain → stresses predator (birds, other animals, 
insects) population. 

Rotors eliminate 
5% of insects  
flying at rotor 
altitudes (~ 3kg 
/km3).Germany: 

1,200 Mt/a 
Small relative 
risk? (Birds & 
other means kill 
more). Can it be 
reduced ?

Study 2018

Not 
recovered



Windfarms: Ecological Effects
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Public Acceptance Changed

• Anti windmill demonstration in Erbach (Hesse/Germany) 
15.01.2017
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