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Agenda

Entropy and spontaneous processes, examples.

« Thermal work and energy
Ideal Carnot processes
Geothermal energy production

« Thermal power plants
Real gases/substances
Steam and gas turbines
Fossil fuel combustion
Carbon capture & sequestration



U.S. Geothermal Resources
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Most of the geothermal power plants in the United States are in western states
and Hawaii, where geothermal energy resources are close to the earth's
surface. California generates the most electricity from geothermal energy. The
Geysers dry steam reservoir in Northern California is the largest known dry
stearmyfield in the world and has been producing electricity since 1960.



U.S. Geothermal Power Electricity Generation 2022

State share of total U.S. geothermal  Geothermal share of total state

electricity generation electricity generation
California 69.5% 5.8%
Nevada 24.2% 9.6%
Utah 2.7% 1.2%
Hawaii 1.8% 3.2%
Oregon 1.2% 0.3%
Idaho 0.5% 0.5%
New Mexico 0.3% 0.1%

2022: US produced about 17 TWh (17 billion kwh) = 0.4% of total U.S. utility-scale electricity
generation.
(Utility-scale power plants: capacity = 1 megawatt (1MW,) of electricity generation)
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https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=table_1_01_a

Geothermal Depth Profile

Worldwide simplest (conventional/ancient) direct use: building/district heating.
Utility: Geothermal electrical power plants, Residential: geothermal heat pumps, A/C

Generating technology: Inject fresh water
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Flash-Steam Power Plant

https://www.energy.gov/eere/geothermal/electricity-generation
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Heat Exchangers (Shell-and-Tube/Finned-Tube)
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Dynamical Equilibrium @ Maximum Entropy

Transitions from one s.p. state (pixel;) to another (pixel;) are micro-reversible (unlikely).
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Extract Geothermal Heat: Efficient Carnot Engines

Cyclic Carnot process at constant entropy AS > work w =-(q,+q.) < 0 on environment
powered by transferring heat from hot to cold sink (T, > T_).
- Refrigerator

Efficiency of an ideal Carnot engine
Ideal Gas: Every cyclic pV engine

can be modeled as Carnot process. £ :1+$:1_T_c
qh Th

* g is maximum efficiency of a
realistic Carnot-type engine.

qh= ASTh

EnT_r'opy All engines based on pV
|AS| = const :
processes can be simulated by a
-w = g4,+q.=AS(T,- T.) combination of Carnot

processes.
gc.= -AS' T, « No thermodynamic (pV) engine
can have an efficiency larger
T than e.
C

Reversing Carnot process implies sign changes of heat energies and work
- External work w>0 done on system can transfer heat from a cold
reservoir to a hot reservoir (T.> T,).

Thermal engine efficiencies gyorm ~ 0.3.
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Entropy and Heat Flow in Reverse Carnot Process

A
P (P4, Va4) Ideal Gas: Every cyclic pV
engine can be modeled as
Carnot process.
q=0 qh= 'AS'Th
-W = gpt+q.=
(P3, Vs3) = AS(T.-T,)
(plr V1
q=0
P2, V>) T,
> V T
Maximum efficiency|n. =1-¢. = S _ L
2 qh Th

Entropy AS with heat q.=AS-T_.from the T,
reservoir preheats the colder (T,) working
fluid/gas, which enters an externally
powered compressor. The compressor does
work on the fluid, raising its temperature

to T,. Heat energy AS-T, is then transferred

to the T, heat reservoir.

Analog: Stream of water AM from a river carries energy AM-g-h,, enters an externally
powered pump that lifts AM by (h,-h,) to the reservoir head at energy 4M-g-h,>AM-g-h;.
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Residential Heat Pump

Carnot heating: In-ground heat pump absorbs
heat energy Qg ®4S-T, from under ground T,
heat bath to preheat expanded work fluid/gas.
Compressor provides differential heat Q;, =-

AS-T;, required for sustaining temperature T;,.

Work fluid transfers
heat Q;, <0 to tank
and interior. Iso-
thermal expansion
after expansion
nozzle in ground
loop heat exchanger.

Req. compressor work
W = Cair : (T,n - 7-air) - ‘Qg‘
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Stirling Heat Engine: Components
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Stirling Heat Engine ()

Closed-cycle regenerative heat engine with
self-contained, permanent working fluid/gas.
Displacer directs flow of working gas.

Stirling engine can be driven by any

temperature gradient, e.g., solar radiation,
nuclear decay heat.
Applications: concentrated solar insolation,
submarines, space craft,..
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Strategic Goal 3: Deliver economic,
environmental, and social justice
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technology deployment.
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