Agenda for this week

The grand picture (Sustainability @ “"Anthropocene”)

« Energy utilization and environment,
Energy consumption and human development
Direct & external costs of energy use,
Planetary climate, greenhouse effect.

« Stated (aspirational) and actual public policies,
mitigation vs. adaptation to environmental &
resource challenges.




Human Energy Harvesting: Resource Transformation
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Law of Conservation of Energy: Energy in an isolated
system can never be created or destroyed. It can only be
transformed. Co-discoverer Robert Mayer. Engines are
used for transformation of energy carriers/types.
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World Energy Consumption per Year

World consumption Trend: AE/a ~ +2.5%

Share of global primary energy
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US Energy Consumption in 2022

2015-2018 > + 3.7 Quads (EJ) = 2021:-2.8 Quads (EJ)>2022:+3.0 Quads

: ion i . ! /M Lawrence Livermore

Estimated U.S. Energy Consumption in 2022: 100.3 Quads 4 National Laboratory
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World Primary Energy Resources/Constant Use

Use up to 2000@ with current (inequitable) resource allocation
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Modified after IEA World Outlook 2014, in light lettering: use reprocessing +
U-238 breeding, Th 232 fertile fuel,

unconventional gas (fracking) + clathrates in frozen environments.

Neglect losses in reprocessing and breeding. Assumed present rate of
consumption in future.



Direct (Internal) vs. Indirect (External) Energy Costs

The real direct costs of energy production in a given power plant :

“Levelized cost of electricity (energy)” per kWh, averaged over 1 year.
What consumer have to pay for 1 kWh from that provider

Ec annuity,, - C_,., +(Operations + Maintenance)

L + (Operations + Maintenance) + fuel

variable

8760 - Capacity — Factor

Annuity: break-even return on the capital after N years of operation.
Estimates are based on Life Cycle Analysis (“from cradle to grave”).

Long neglected, but potentially much more significant, and harder to
estimate in terms of $$:

- > “External Costs of Energy”




External Costs of Energy Production/Consumption

Direct and indirect costs and effects that are typically not included in price of
primary energy carriers

e Pollution: reduced air and water quality &> public health, economic cost.
e Reduction of water quantity = agriculture, public health (food).
e Physiological & aesthetic (audio, visual) effects - quality of life.

e Destruction of arable and wet land, forests-> lasting economic cost

e Ocean acidification, changes marine bio environment, food chain

e Destruction of animal/fish habitat

e Ecological effects from accidental (coal, oil, nuclear,..) spills & waste release

e Limits to energy security: Susceptibility to external political pressure from
energy producers.

e Accessing foreign energy resources may require military action.

e Addition of heat-trapping gases (GHG) to atmosphere 2 large changes
climate/environment, large economic costs.



Direct External Costs of Energy Production
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Direct External Costs of Energy: Fire Hazards
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Irvine, California: Two fires began early morning of October 26, 2020, which quickly spread over 30,000 acres in 48 hours.

Likely causes: Human activities/neglect, downed electrical power lines
Town of Paradise (CA) lost, > 85 fatalities.




Direct External Costs of Energy Consumption

Loss of life & health - economic costs.

Cost of mortality from PM 2.5* exposure, as % of GDP, 2010, 15 largest CO, emitters
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Sulfur, nitrogen oxides, particulates from China’s 0 40 20 30 40
Coal'ﬁred power p|al‘ltS 9 aCid rain on SeOUI/SK, . GOE Stm 'Smallairborneparticlesvesponsitgleformpst
TOkYO/JP, particulate pO”Ution in LOS Angeles (J. Source: New Climate Economy of the health effects of outdoor air pollution
Geophys. Res.).

New Delhi/India 2021 (1) vs. < 2019(r)

During pandemic lockdown (left),
absence of automotive traffic clears air
of smog, which is normally present
(right panel)




Direct External Costs: Air Pollution, Acid Rain
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Certain types of coal and oil burn with emission
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SO, in air rains down and pollutes soil and waters, increases the acidity levels
of rivers, lakes and seas - Kkills aquatic life. Taken up in soil > can Kill
vegetation.



Tracing Atmospheric CO,

Fossil fuels > 9 GtC/a
2.5 GtC/a > biosphere

2.5 GtC/a = oceans
4 GtC/a - atmosphere

PARTS PER MILLION

Global anthropogenic CO, emission:
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IPCC claim: Anthropogenic
emissions are large, have
increased and will further increase
in future. - Future extent will
depend on public policies.


http://www.esrl.noaa.gov/gmd/ccgg/trends/

Correlated Changes in Atmospheric Composition

O, depletion - correlation with CO, ?

Both have oscillatory pattern, non-linear long-term trends.
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Concentration of Greenhouse Gases
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Changing a Natural Balance

e i . o - Man-induced
Global carbon dioxide budget changes in
(gigatonnes of carbon per year) Earth’s Carbon
Cycle between
surface and ocean
Fossil fuel & Atmospheric reservoirs.
cement growth Land sink Anthropogenic
89+ 0.4 43+0.1 e T W changes (+ or -)
change .
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09+0.5

fossil fuel, land
use,...).

Ocean sink

26+05 | Red up arrows:
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flow.
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= CaCo, + ALSI,0, (OH), P



Earth’s Radiation Balance (GH Effect)

Reflected Solar Incoming 235 Outgoing
Radiation Solar Longwave
107 Wm** Radiation Radiation

342 Wm™? 235 Wm™

Reflected by Clouds,
Aerosol and
Atmospheric Emitted by 40

Gases Atmosphere 165 Atmospheric

77 30 / [ Window_

Emitted by Clouds
Absorbed by Greenhou
67 Atmosphere Gases 3

FAQ 1.1, Figure 1. Estimate of the Earth's annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and
atmosphere is balanced by the Earth and atmosphere refeasing the same amount of outgoing longwave radiation. About half of the incoming solar radiation is absorbed by the
Earth’s surface. This energy is transferred to the atmosphere by wamning the air in contact with the surface (thermals), by evapotranspiration and by longwave radiation that is
absorbed by clouds and gregnhouse gases. The atmosphere in turn radiates longwave energy back to Earth as well as out fo space. Source: Kiehl and Trenberth (1997).

Modified after IPCC AR4 Report:
http://www.ipcc.ch/pdf/assessment-report/ar4/wagl/ar4-wagl-chapterl.pdf



http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter1.pdf

Ominous Correlation: Temperature vs. Atmospheric CO,

Systematic gradual rise of AT=1.59C correlates with experimental
record of atmospheric CO,, as measured from atmospheric samples
and air trapped in polar ice.

Solar variation does not seem to impact the mean temperature trend.
(Berkeley Earth Surface Temperature study, 2012)
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http://berkeleyearth.org/

Mean Land and Ocean Temperature Trends
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Trends In Average Global Sea Temperatures

21.1 degrees Celsius, March 17, 2024

210 2023

20.5

1982-2011 average

20.0

| | | | |

Jan. April July Oct. Jan.

Note: The temperatures shown, in degrees Celsius, include data from 60°S to 60°N across all longitudes.

Source: NOAA OISST v2.1, via ClimateReanalyzer.org, Climate Change Institute,

, : . SCOTT DANCE / THE WASHINGTON POST
University of Maine.



Big Data: Weather & Climate Information Sources

One of many
weather stations
(Albany) of US
Network.

Remote |mag|ng of atmospherlc water vapor b
sateuu;e |m‘ages7(NOAA m il i

' Systematic studies to establish global historic trends require:
188 Excellent weather/climate information provided by several

M 1. U.S. Historical Climatology Network (USHCN): 1221 observing
stations in the 48 contiguous states (Europe equiv).

' composition, flows, ocean temperatures, etc., via many
50 NOAA/NASA/ESA/EUMETSAT satellites.

,I'ce coresmbored i thé i 3. Check theoretical models against known history.

Reie | L= WOESE b e o-climate information: isotope ratios, air bubbles in Greenland
National#ce Core Lab ', .. . . )
' (\ad 2010 =2 O Antarctic ice cores, tree rings, coral reefs, historical records.



Atmospheric CO,: Excess Isotope 14C
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Nuclear Isotopes: Time Dependent Fingerprints

Percent of Original Carbon- 14 Remaining

Radioactive Decay of 14C

O‘%‘o +* ©

After three

100 Beta decay
14C 14N electron antineutrino
75
@ Protons
50
@ Neutrons
25
O L T T L] 1 4 L] 1
o 1 2 3 £ 88 & 2 8 9 10
4 ES Number of Half Lives l

half lives
only an
eighth ofthe

MC remains

Adapted from NOAA:
https://gml.noaa.gov/ccgg/isoto
pes/decay.html




Ocean Warming Trends

Increased ocean heat content (OHC):
1971-2010: AP=(0.39+£0.07)W/cm? for

upper 2km ocean.
2018 [Cheng et al. (2)], along with the other annual observed values superposed.

Zettajoules (1 7]1=1021 _]) Kelvin

® Chengetal. (2) -1 ﬂf:,,"ggm :

2500 @ Domingues et al. and Levitus et al. (10, 12) 2081-2100

o Ishiiet al. (6) 2

£ ® Resplandy et al. (11) 7
/

§ 7
S / Most (>90%) excess
g 555 i PO - heat energy is absorbed

200 4 -06 by oceans. Man
%‘5"0‘ 150 RCP8.5 ,’l d'»;f y
b i iy = ifferent methods of
g 50|y 7 1 04! ’ measurement: Direct
§ 1000 | T 3E // [ U contact with floats_,...,
g - remotely by satellites.

e
500 P L 0.2 o
o Predictions: For BAU
g AE=2300Z]
Baseline: 1991-2005 «~nns xanf-0 AT= +0.9 K by 2100.
- - outgassing, sea level
T T T T 1 1 T T ¢ .
1960 1970 1980 1990 2000 2010 2020 2040 2060 2080 2100 rise (by how much?)

L. Cheng: Science Mag. Jan 11, 2019
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Aqueous CO, Equilibrium and Consequences

CO,(g)+2H,0(f) ==H,CO,(aq) + H,0 ==H,0" (aq) + HCO;

CO; Time Series in the North Pacific

Mauna Loa Atmospheric CO; (ppm)
ALOHA seawater pCO; insitu (patm)
ALOHA seawater pH (insitu)
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https://www.pmel.noaa.gov/co2/file/Hawaii+Carbon+Dioxide+Time-Series

Shells Dissolve in Acidified Ocean Water
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45 days

pH

Henry'sLaw p., =k, (T)-[CO, ]

Increasing atmospheric concentration
of CO, - increasing CO, solvation in
sea water - decreasing pH value
(increasing [H*]=[H;0*], complex set
of rxns)

NCADAC Report 2013

Consequences of ocean acidity

Bleaching of corals,
Dissolution of shells of marine animals

Example: Pteropod, “sea butterfly”:
Tiny sea creature (size of pea).
Pteropods = food for marine species
from krill to whales, major food for
North Pacific salmon.

Shell slowly dissolves after 45 days.

(Photo credit: National Geographic Images)



Carbonate Chemistry: Ocean CO, Uptake

Voe=1.4-1018 m3

Atmospheric CO2 Fraction

Buffer : CO, (g) + CO2™ e—-2—> 2HCO;

Dissolved CO, : [CO,(aq)]|=[CO,-H,0]+ [HCO-? ] + [CO32 ]

(€0, (aq)],.,, = kuPeo [1 vk J[H ]+ koo [ H? ]2)
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Oceanic pH Value

Alkaline buffer action of ocean water
reduces with increasing acidity
(decreasing pH)

- smaller fraction of CO, is taken up by
ocean.

Average oceanic pH has dropped by 0.1
(8.2>8.1) within last 15 years. >
Decreased CO, uptake: 70% - 50%

(if 100% of the ocean waters participate,
less if only surface layers)

Non-linear positive feedback:

Added CO, release decreases uptake by
ocean waters.

Complex systems have capacity of sudden

irregular (chaotic) response to small changes of
parameters.



Mean Temperature - GHG Inventory Correlation

Global surface temperature increase since 1850-1900 (°C) as a function of cumulative CO, emissi
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