Spectral
Basic Statistics

Reading Assignment : Knoll, Ch. 3; Bevington, Chs.1-3




Data Reduction ("Analysis")

Acceptable data analysis includes evaluation and discussion of uncertainties
of parameters providing a "reduced” description of measured data.

Example:
Sample mean (expectation) value, variance (standard deviation)

Statistical (random) uncertainties = Precision

Systematic (instrument-inherent or analytical) > Accuracy

biased detector response, bad resolution,
poor analysis procedures (bad fit function, poor choice of fit
range, wrong Bckg. function, ..)
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Signal -Plus-Background Spectrum
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Radioactive Decay as Poisson Process

Useful when only a mean count rate is known: decay, background counts, or
reaction.

137Cs = unstable isotope, decays with
t,,= 27 years > p=1n2/27 = 0.026/a = 8.2-10-19s-1 > small

- Sample of 1 ug: N = 10® nuclei (=trials for decay)
How many will decay?
n=N-p=8.2-10*°s"1

Count rate estimate dN/dt = (8.2-10*° + 905) s-!

1 estimated

Probability for m decays P (u,m) =

5
,Um e - (852 ) 105)m ) e—8.52-10
m! m!

PPoisson(/ul m) =

Spectrum Analysis Statistics
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Poisson Probability Distribution

Limit of binomial distribution

Limp—>0,N—>oo I:)binomial (N J m) = I:)Poisson (:u’ m)

Probability for observing m events when average is <m> = u

LPPoisson (,Ll, m) —

pu e
m!

Counts with Error Bars

u=<m>=N-p for N — o0
and o = u

For radioactive decays [At™]— p=

p<1—>cf ~(m)#counts

Observe N counts (events) >
- statistical uncertainty is oy = +J/N

N
v, #
2 -I-D_ -|-+'=l ]
:{E’) ‘+é'—N+\/W
PRRSS
E nt * -
£ ! t :+
P

0 S \

1] 0 X2
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Functions of Stochastic Variables

Random independent variables Ny, N,,....,.N,
corresponding variances 612, 6,2,....,00°

------

Function f(N;, N,,....N,) of random variables: Uncertainty AN; >Af({N})
Gauss' law of error propagation:
2 2 2

of > of > of >
sz —_— Gl-l- S 02 + i | — Gn

o, o, oN

' 2

(Af |/V2,/V3,..) M (Af I/V1,/V3,..)

1/2

2 2
+..+|Af
( |N1,N2,..,Nn—1 )

Further terms if N, are not independent (= correlations, co-
variance tensor)
Otherwise, individual independent component variances (Af)? add.

Spectrum Analysis Statistics
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Experimental Mean Count Rate and Variance

What can be measured: ensemble (sampling) averages (expectation values) and
uncertainties
Task: 236U (0.25mg) source, count # o particles
emitted during N = 10 time intervals At (samples

A n-<n> (N-<N>)° @At~ 1min). A = ??
36076 129.6 16796.16
35753 -193.4 37403.56 Average countn in a sample of a population:
35907 -39.4 1552.36 1
2 36116 160.6 2876416 "N 2" (N ey Unknown)
35884 -62.4 3893.76 Variance of n in each of the M individual samples
36136 189.6 35948.16 62 _ 2 ZLZN:(W _(M) - (N=N,, m=1..M)
35741 -205.4)  42189.16 N-1143
35640 -306.4 03880.96 Variance ("error") of the
36124 177.6 31541.76 sample average ( ) #(n >popu|at|on
36087 140.6 19768.36 s N
35946  -15E-12  3463.76 % =y - mn_p ="
<n>  <n-<n>> o’

Spectrum Analysis Statistics

Std.deviation'c. =./c? ~~J<n>/N =59 'Error” of <n> much smaller than
! ! o?. It is reduced by 1/10 for 100
Result: (n)

<n>p0p = (35946 £ 59) min " times larger sample
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Spectrum Analysis Statistics

Sample Statistics (Simulation)

P(x)

X

‘_ P(x):#-exp —
27V

Assume true population distribution for variable x

5

with true ("population”) mean <x>,,, = 5.0, v, =1.0

Sample of M=three 10-count "measurements” of some variable x:

Normally Distributed Events

Normally Distributed Events

10 10

, 10 19 ,
x>=511 6=111  |<x>=496 =123
X X XX
c --------- x--- _____ )C ______ X _9(_-
—o-x ---------------------- 5_. ,,,,,,,,,,,,,,,,,,,,, e}
* m o m - -x->-< ------ >'I<I-- .><' », . . 'X- . ---
X=X Crmrmgmemngememe == %
X
| 0 0
101 1055 %00 3045

Normally Distributed Events

< =4.96 =0.94

X <X>+0O
qu‘ ....... x-x-<><>
DR, X
------------------- ()()—G
K
|
401 4055

Equally weighted sample average <x> = (5.11+4,.96+4.96)/3 = 5.01
Sample variance s?=c? = [(5.11-5.01)2+2(4.96-5.01)?]/2 = 0.01 s = 0.0075

2 = 0.0075/3 = 0.0025

ox = 0.05 > Result: <x>,,, ¥ 5.01 + 0.05

W. Udo schrider, 2022 Could replace with one measurement 30 counts long.



Example: Spectral Analysis (Local Bck Subtr.)

Add or subtract 2 Poisson-distributed numbers N; and N.:

Variances o2 always add N [Nli\/,\TI] [ \/*] (N % N,) +\//\\/1TN2

J
Std. dev o, Std. dev o, ﬁ Std. dev 5.,
2500 - & ‘ Analyze peak in range channels
Ve is Gamma Line Spectrum | ¢ _ ¢ : beginhing of background
| left and right of peak
| L] Total area ¢; - ¢, 2> Ny,
- | |
= 1290 ." l" N(c;)=B1, N(c2)=B,,
© |
g €——pPeak Area A Linear (®constant) background
9 S 1000 '; I| B = n(Bl+Bz)/2
5 8 | 1
o 500 "
g Peak area A =) counts;/ch
£ 0 . : . :
E .. N 419 o 435 Stat uncertainty std.dev.
&

W. Udo Schréder, 2022

channel number o4 =\/N12 +n- (B1 + BZ) /2



Stochastic Observables

2 sources of stochastic observables x in nuclear science:

1) Nuclear phenomena are governed by quantal wave functions and inherent
statistics

2) Detection of process occurs with imperfect efficiency (e < 1) and finite
resolution distributing sharp events x, over a range in x.

Stochastic observables x have a range of values
with frequencies determined by (normalized) probability distribution P(x)

13

Characterize P by set of moments of P
«xn> = [ xP(x)dx; n=0,1,2,.

with the normalization <x% = 1. First moment of P:

E(x) = <x> = [x-P(x) dx

Spectrum Analysis Statistics

second central moment = "variance” of P(x): 6,2 = <x2>-<x>2

W. Udo Schroder, 2022



Uncertainty and Statistics

Nucleus is a quantal system described by a wave function y(x,...;t)
(X,...1) are the degrees of freedom of the system and time.
Probability density dP(x,t)/dx (e.g., for x, intfegrate over others)

0
Q.

dP(x,t) )
= X, t
0 [y (x,1)]
Normalization

P(x,t) = J-_Jr:dx dP(x,1)

:j_*wdx|w(x,t)|2=1

Transition between states 1— 2, I' = Zi [(M,)[° p(E)
T

1is not a stationary state — finite width AE ~T"

dR,(x,t)
dx
A =1/t mean lifetime 7

_f.t
=y (x)[ e " o«ce™" state 1 disappears

For different nuclei or different states of one nucleus, the probability rate A
for disappearance (decay rate) can vary over many orders of magnhitude 2> no

certainty for any single entity.



P(x)
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P(x)Ax

Spectrum Analysis Statistics

W. Udo Schréder,
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Spectrum Analysis Statistics

Sample Statistics (Simulation)

P(x)

X

‘_ P(x):#-exp —
27V

Assume true population distribution for variable x

5

with true ("population”) mean <x>,,, = 5.0, v, =1.0

Sample of M=three 10-count "measurements” of some variable x:

Normally Distributed Events

Normally Distributed Events

10 10

, 10 19 ,
x>=511 6=111  |<x>=496 =123
X X XX
c --------- x--- _____ )C ______ X _9(_-
—o-x ---------------------- 5_. ,,,,,,,,,,,,,,,,,,,,, e}
* m o m - -x->-< ------ >'I<I-- .><' », . . 'X- . ---
X=X Crmrmgmemngememe == %
X
| 0 0
101 1055 %00 3045

Normally Distributed Events

< =4.96 =0.94

X <X>+0O
qu‘ ....... x-x-<><>
DR, X
------------------- ()()—G
K
|
401 4055

Equally weighted sample average <x> = (5.11+4,.96+4.96)/3 = 5.01
Sample variance s?=c? = [(5.11-5.01)2+2(4.96-5.01)?]/2 = 0.01 s = 0.0075

2 = 0.0075/3 = 0.0025

ox = 0.05 > Result: <x>,,, ¥ 5.01 + 0.05

W. Udo schrider, 2022 Could replace with one measurement 30 counts long.



Example 2

Sample size
n=10

Normally Distributed Events

10 T
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T
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Normally Distributed Events

X x
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The larger the
sample, the
narrower the
distribution of x
values, the more it
approaches the
true Gaussian
(normal)
distribution.



Central-Limit Theorem

The means (averages) of different samples in the previous examples
cluster together closely. > general property of samples of stochastic
variables:

The distribution of the sample means approaches a Gaussian
normal distribution, if the size n of the sample increases,

regardless of the form of the original (population) distribution.

18

The mean (average) of a distribution of stochastic data does not contain
information on the actual shape of the distribution.

The average of any truly random sample of a population is already close to
the true population average. Considering many samples, or large samples,
harrows the choices. The Gaussian width becomes narrower for larger
samples. > The standard error of the mean decreases as the sample size
Increases.

Spectrum Analysis Statistics

Probability theory

W. Udo Schréder, 2022
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Spectrum Analysis Statistics

Binomial Distribution

Integer random variable m = number of events, out of N possible.

Example: decay of m (from a sample of N) radioactive nuclei, or detection of m (out of
N ) photons arriving at detector.

Let

p = probability for a (one) success (decay of 1 nucleus, detection of 1 photon)

Choose an arbitrary sample of m trials out of N fotal trials (possibilities)

p™ = probability for at least m successes (observations)
(1-p)N-m = probability for N-m failures (survivals, not detected,...)

Probability for exactly m successes out of a total of N trials

P(m)oc p™-(1-p) "

How many ways can m events be ‘chosen’ out of N ? - Binomial coefficient

NY NI (N-m+1)---N
m) mi(N-m)! 1---m

Total probability (expected success rate) for any sample of m identical events:

N N—
Pbinomia/(m) = (m]'pm '(1 —P) "

W. Udo Schréder, 2022



Distribution Moments and Limits

N N-
Pbinomia/(N'm’p) = (m]pm (1—P) "

0.3

Binomial Distributions N=30

o
o

0.2
Pb(N,m,0.1)

Distributions for N=30
and p=0.1 and p=0.3

1
Pb(N,m,0.3)
3
:+;—, 0.1 ]
S
(Vp]
v
2 ] 1l
g 0 --.I"J- |_||—| —
g 5 10 15 20
£ m
2
(V)

Distributions P(m) approximates
Gaussian very fast, already good
for p=0.2-0.3

W. Udo Schréder, 2022

Probability for m "successes” out of N
trials, individual probability p

Normalization
N N N Nem
1= Z P, (M, p) = Z(mj p" (1_ p)
m=0 m=0

Mean and variance (‘uncertainty )
M=N-p~N, and c2=N-p-(L-p)~N,,
N, = # of "counts" observed, p<«1.0

Statistical "error” of N : o, &N

o, JN-p--p) 1 more counts =
= ~ —>
m N-p N smaller error

obs

Observe Poisson = Gaussian

. 1
L@l Poin(N; M, P)=——€Xp 1~

N—w m
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Spectrum Analysis Statistics

Pp (u, m)
Pp(0.5,m) 0.6 [
a

Pp(3,m)
Pp(5.m)

O

Pp(10, m)
a

Poisson Probability Distribution

Results from binomial distribution in the
limit of small p and large N (N-p > 0)

IHT(} I:)binomial (N 1 m) — I:)Poisson (,U, m)
p—

and N—oo

Poisson Distributions

.08

0.4

0.2

d

o
[

m

W. Udo Schréder, 2022
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Probability for observing m events
when average is <m> = u

M o=
-e
b m=£ =
Poisson (,u ) m! m=0,1,2,..
u=<m>=N-p and &%= u

is the mean, the average number of
successes in N trials.

Observe N counts (events) >
- uncertainty is o = J/u

Unlike the binomial distribution, the
Poisson distribution does not depend
explicitly on p or N |

For increasing p (<1.0):

Poisson 2 Gaussian (Normal Distribution)
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Spectrum Analysis Statistics

Moments of Transition Probabilities

23
N :0.25mg = 0.25mg - 0.022-107 _ 6.38-10"
2369
(n) 3.5946-10* min™
N 6.38-10"
Probability for decay (decay rate per nucleus):
p=1=5.6362-10" min™

corresponds to "half life"t,, =2.34-10"a

=5.6362-10 “ min™

Small probability for process, but many trials (n,= 6.38-10%)
- 2> > O<ng-A < e

Statistical process follows a Poisson distribution: n="random”
Different statistical distributions: Binomial, Poisson, Gaussian

W. Udo Schréder, 2022



Radioactive Decay as Poisson Process

Useful when only a mean count rate is known: decay, background counts, or
reaction.

137Cs = unstable isotope, decays with
t,,= 27 years > p=1n2/27 = 0.026/a = 8.2-10-19s-1 > small

Sample of 1 pug: N = 10% nuclei (=trials for decay)
How many will decay?
n=N-p=8.2-10*°s"1

23

Count rate estimate dN/dt = (8.2-10*° + 905) s-!

1 estimated

Probability for m decays P (u,m) =

5
,Um e - (852 ) 105)m ) e—8.52-10
m! m!

PPoisson(/ul m) =

Spectrum Analysis Statistics
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Functions of Stochastic Variables

Random independent variables Ny, N,,....,.N,
corresponding variances 612, 6,2,....,00°

,,,,,,

Function f(N;, N,,....N,) of random variables: Uncertainty AN; >Af({N})
Gauss' law of error propagation:
2 2 2

of > of > of >
sz —_— Gl-l- S 02 + i | — Gn

o, o, oN

' 2

(Af |/V2,/V3,..) M (Af I/V1,/V3,..)

24

1/2

2 2
+..+|Af
( |N1,N2,..,Nn—1 )

Further terms if N, are not independent (= correlations, co-
variance tensor)

Otherwise, individual independent component variances (Af)? add.

Spectrum Analysis Statistics

W. Udo Schréder, 2022



Measured Probability

Confidence Level

0.4
0.35
0.3
0.25

0.2

probahility

25

0.15
0.1
0.0%

(/

Aw

(¥

)

0.0

true value <x

Spectrum Analysis Statistics

0 1

pop

2

304

CL(S =30) =99.7%

W. Udo Schréder, 2022

5 6 T &
4

9

With (confidence level) CL probability,
> differs by less than
5 = nc from measured average.

10

CL(0 =10)=68.3% CL(0 =20)=95.4%

Assume normally distributed
observable x:

e (X=(X) p)

-eXp< — -

2
27V pop 2V pop

2

Sample distribution with data set

- observed average <x> and std. error o
approximate population. Confidence level CL
(Central Confidence Interval):

P(< X0 > —<X>[<0)~

y) <X>+0 (X _<X>)2
~ : exps—————;dx=CL
27w o? <'>[> { 2

For very trustworthy exptl.
results quote +3c error bars!



Stochastic Data Fits to Theory

Power [W]

amor reprasented by xyerrorbars

012
Power +—e—
Theory
AP
— " T T
oo+ +7l ) Sy
1L .0 T
ager g =
+ * *; .‘ T "
0.0¢ | T o=
002}
0 | !
0 10 20 30 40 50

Resistance [Ohm)]

Experimental samples should

scatter normally about the
true theory function.

Which of the 2 data plots show
stochastic variation?

16

* 0(1°-7°)|
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Energy (MeV)



Setting Confidence Limits

Example: Search for rare particle decay with small decay rate 4, observe counts within
time At. Decay probability law (survival prob.) dP/dt oc exp {- A-t} oc dP/dA.

Law is symmetric in Land t: > P(A, t)

/ Prob for no decay in [0, At], particle has survived

survival during At
at A.

AP(0| 1) =At-e **-AZ with [At-e**di=1 Probability for
0

27

Example : no decays observed in AT

Ay
B A AAT g 4 AT Prob for 1 decay
P(ZS/IO)_'([AT e Tdl=1-¢e for A— 1.

Ao =_—1-In[1— P(/IS/io)]z_—l~ In[1-CL(4,)] 20 Lower limit for
AT AT Ao = upper limit
for A

Spectrum Analysis Statistics

The higher the confidence level CL (O < CL < 1), the larger the upper limit
for A for a given time AT inspected. Reduce limit by measuring for longer
period or larger samples.

W. Udo Schréder, 2022



Binomial Distribution

Consider a stochastic process with two possible outcomes: yes/no, head/tail,
success/failure,..., decay/remain intact

- specific probability for success = p and therefore for failure (1-p)
Initiate this process N times > Question: What is the probability for m successes?

m = probability for at least m successes (observations) among N trials
(1-p)N-m = probability for N-m failures (survivals, not detected,...)

29

Probability for exactly m successes out of a total of N trials

m N NI
P(m):(r/:l)j-pm-(l—p)N - 2. P(m)=1 (m}zm!(N—m)!

How many ways can m success events be ‘chosen’ out of N ? = Binomial coefficient

<mv> _ % mV P(m) _ % m" (ijm(l_p)Nm
m=0 m=0 m

Spectrum Analysis Statistics

Mean value y=(m)=N-p; Variance o, =N -p-(1-p)

W. Udo Schréder, 2022



Poisson Probability Distribution

Limit of binomial distribution

Limp—>0,N—>oo I:)binomial (N J m) = I:)Poisson (:u’ m)

Probability for observing m events when average is <m> = u

30

LPPoisson (,Ll, m) —

pu e
m!

Counts with Error Bars

u=<m>=N-p for N — o0
and o = u

For radioactive decays [At™]— p=

p<1—>cf ~(m)#counts

Observe N counts (events) >
- statistical uncertainty is oy = +J/N

N
v, #
2 -I-D_ -|-+'=l ]
:{E’) ‘+é'—N+\/W
PRRSS
E nt * -
£ ! t :+
P

0 S \

1] 0 X2

W. Udo Schréder, 2022

100



31

Spectrum Analysis Statistics

Curve Fitting to Data: Maximum Likelihood

Measurement of correlations between observables y and x: {x;y;| i=1-N}
Hypothesis: y(x) =f(cy,....c,,; X). Only statistical errors. Parameters defining
f: {c1,...c} ngos=N-m degrees of freedom for a "fit" of the data with f.

(yi B f(Cli"’Cm;X'))z}

for every data point {y;,x;},
if f=true law

2

PGy G X) = - eXP | -
210! 20,

1000 MC Events in 100 x bins
50 T T T T

-y=1(x)

Maximize simultaneous probability for all points

v, fix)

When is the y2 as
good as can be?

Minimize chi-squared by varying {c;,....c.}: dx2/dc;= 0

W. Udo Schréder, 2022



Minimizing x?

Example: linear fit f(a,b;x) = a + b-x to data set {x,, y;, o}

Minimize:
8
0=_2
ca”®
o B
0=2%
ob %

N N .
ay. +b> —5
i-1 O; i-1 O;

Spectrum Analysis Statistics

ady;, +bd;, = ¢

W. Udo Schréder, 2022

\

(AYi)2 i(Yi_a_bxu)
i1 Oj i=1 O'iz
N (y; —a—bx;) N 2(y; —a—bx;)
oa /é ,2 i§1 O',-2
N 2x;(y; —a— bx;
5 v )

s_1la di, b:ldn ¢
Dic, dy, D|dy; ¢

2
1o o 101

For more complex problems, solve
by computer/numerical methods



Distribution of Chi-Squareds

Distribution of possible x? for data sets that are distributed almost normally about a
theoretical expectation (function) with ny,; degrees of freedom:

O ) Chi-Squared Distribution
d}(2 0.4 T | T T T 5 2 ndof/z—l _Z%
P(u,1) -. dP(x” Ngor) (Z ) =
—_— o\ | 2 - 2
Pe2 >3 dx 2707 2T (ngoyr /2)
o P(u,3) AR 2\ 2
b 20 N Undofs - <Z > =lgor 02 = 2Ngor  Mgor > 1
Pws) : =Y | I(n) = (n-1)! = Stirling's formula
§ S A e =2.507e"'n""Y?(1+0.0833/ n)
g %0 2 4 6 8 10
5 u:=y 2 Reduced y2:
% o0 dP(X n ) Zrz :Zz/ndof =;(2/(N—m—1)
2 f
s PUSNar) = | —— %= dx For
5 72 0<y?<1.5 — Confidence>50%
&

Should be P > 0.5 for a "acceptable” fit

W. Udo Schréder, 2022



CL for y2-Distributions
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Example: Spectral Analysis

Adding or subtracting 2 Poisson distributed numbers N; and N,:

Variances o? always add N =[N, + [N, [+ [N, + N, |2 (N, £ 1) ENIEIS
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2000 -
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1500 —

1000 -

counts/channel

500 -

S'I'd deV 01

Gamma Line Spectrum

400 Cq

Spectrum Analysis Statistics

W. Udo Schréder, 2022

410

channel number

Std. dev o, ﬁ S‘rd. dev Gl

Analyze peak in range channels

| ¢y - C,: beginning of background

left and right of peak
h=c¢y-C,+1.
Total area c; - ¢, > N;,

N(c1)=By, N(c;)=B,
Linear (*constant) background
B = n(B,+B,)/2

Peak area A =Y counts;/ch
A=Ny, -n-(B, +B,)/2

Stat uncertainty std.dev.
oa=\Ny; +n-(B, +B,)/ 2
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