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Detector Design Principles

Ionization (charge separation) 
Detectors

• Ionization chambers 
(solid-state and gas)

• Proportional counters

• Avalanche counters

• Geiger-Müller counters

• Cloud/bubble chambers

• Track detectors

Scintillation Detectors

• Phosphorescence counters

• Fluorescence counters 
(inorganic solid crystal 
scintillators, organic solid and 
liquid scintillators)

• Čherenkov counters

Associated Techniques

• Photo sensors and multipliers

• Charged-coupled devices

• Electronic pulse shape analysis

• Processing/acquisition 
electronics
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Detection Of 
Ionizing Radiation

Solid-State Ionization
Chambers
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Ionization Chambers (Solid-State and Gas Medium)

Semiconductor n-, p-, i-types Si, Ge, 
GaAs,.. 
Band structure of solids VB gap CB.

Ionization lifts e- up to CB, leaves hole h+ in 
VB → free charge carriers, produce D U(t)~E.

General principle: Radiation dissipates energy E via production of  

electron-ion (e-, h+) pairs in a medium enclosed between electrodes 
(Anode, Cathode). Electronic E signal picked up at A or C. 
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Particles and Holes in Pure Semi-Conductors

Fermi gas of electrons (and holes) 
Fermion statistics @ temperature T:
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Hyper-Pure Germanium (HpGe) g−ray Detectors

Hyper-pure Ge detectors for g-rays: High sphoto , small gap → high 

efficiency & high resolution. Cool to -77oC (LN2) because of small gap EG.

Ge Cryostate (Canberra)

Ge cryostate geometries (Canberra)

Type used in large numbers in NP arrays 
with anti-Compton shield detectors.  
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Properties of Ge Detectors: Energy Resolution

Size=dependent mall detection 
efficiencies of Ge detectors e  

10% →solution: bundle in 4-

arrays GammaSphere,Greta 
EuroGam, Tessa,…

Superior energy resolution, 
compared to NaI

DEg ~ 0.5keV @ Eg =100keV

Higher peak/Compton ratios  



Typical Energy Resolution of a HPGe Detector
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Semiconductor Junctions and Barriers

Need detector for rad-induced charges  
→ otherwise, no free carriers allowed.

Difficult to make: perfect i-type (intrinsic) 
Si = chemical Group IV. 

Trick: Deplete part of combination (SC 
junction) 
n-type Si: by doping with Li or Group V e-

donor atoms (P, Sb, As), 
p-type Si: by doping with Group III e-

acceptor atoms (B,Al,.. ).

Junctions diffuse donors and acceptors into 
Si bloc from different ends.

Diffusion at interface → e-/h+ annihilation →
space charge=zone depleted of carriers

Electrons move easily through the junction from n to p 

but not from p to n, and the reverse is true for holes.

SC Diodee-

I

e-e-

Reverse 
bias

U
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Surface Barrier Detectors

Metal film

Silicon wafer

Metal case

Insulation

Connector

EF

Semiconductor/ 
Metal Junction

CB

VB

Thin metal film on Si surface produces space charge 
(SSD surface states) = effective barrier (contact 
potential) → depleted zone with no free charges. Apply 

reverse bias to increase depletion depth. Free charge 
carriers created from incident radiation → DV signal 

Ground          +Bias
Front: Au    Back: Al
evaporated electrodes

Insulating 
Mount

Depleted layer

Dead layer

Possible: electrical 
depletion depth ~ 100m 
dead layer dd≤ 1m

V ~ 0.5V/m 
Over-bias reduces dd

ORTEC 
HI detector 
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Si-Strip Detectors

Typically (300-500)m thick. 
Fully depleted, thin dead layer.

Annular: 
16 bins (“strips”) in polar (q) , 
4 in azimuth (f) (Micron Ltd.)

Rectangular with 7 strips
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