[GOR Pro

Version 6.1

WaveMetrics, Inc.

Updates

Please check our website at <htt¥>://www.wavemetrics.com/> or the Igor Pro Help menu for minor updates, which we
make available for you to download whenever bugs are fixed.

If there are features that you would like to see in future versions of Igor or if you find bugs in the current version, please
let us know. We're committed to providing you with a product that does the job reliably and conveniently.

Notice

All brand and product names are trademarks or registered trademarks of their respective companies.

Manual Revision: November 3, 2009 (6.12)
© Copyright 2009 WaveMetrics, Inc. All rights reserved.
Printed in the United States of America.

WaveMetrics, Inc.

PO Box 2088

Lake Oswego, OR 97035
USA

Voice: 503-620-3001

FAX: 503-620-6754

Email: support@wavemetrics.com, sales@wavemetrics.com
Web: http://www.wavemetrics.com/

mailto:support@WaveMetrics.com
mailto:sales@WaveMetrics.com
http://www.wavemetrics.com/
http://www.wavemetrics.com/

Table of Contents

Volume | Getting Started
[-1 Introduction to Igor Pro ... I-1
[-2 Guided Tour of Igor Procccvviiiiininiiiiinns I-11

Volume I User’s Guide: Part 1
II-1 Getting Help ..ccoeivii -1
II-2 The Command Windowccccccevevienieecriesveeneenne. 1I-17
II-3 Experiments, Files and Folderscccccccucu.ee. I1-25
II-4 WINAOWS ..ovviiiiieeieeeceeeeeeeee ettt II-51
II-5 WAVES .ottt II-73
II-6 Multidimensional Wavescccccceevveeeevieecveeecnenenns II-101
II-7 Numeric and String Variablesc.ccoeenni I1-109
II-8 Data FOIAerscccevieeiiecieerieeieeeieeeee e II-115
II-9 Importing and Exporting Dataccccccuvueurnnene II-133
II-10 Dialog Features ... 11-173
II-11 TabIES oottt 1I-181
II-12 Graphs ... 11-227
II-13 Category PIots ... 11-299
II-14 Contour PIOtSccoeecvieeiiiieeeeeeceeee e 11-309
II-15 Image PIOtsccceeiriiiiiiiiciiccicicccce I1-331
II-16 Page Layouts ..o I1-353

Volume Il User’s Guide: Part 2
III-1 NOtEDOOKS ..ottt III-1
III-2 ANNOtAtioNSccceveeeeiiieeiieeeeeeeee e I11-39
II-3 Drawing ..o, I1I-67
III-4 Embedding and Subwindows ... III-85
II-5 Exporting Graphics (Macintosh)c.ccceeeenies 1-97
III-6 Exporting Graphics (Windows)ccceevunene. I11-105
II-7 ANalysiSccocovmiiiiiiiiieieiccec e II-113
III-8 Curve Fittingccccocoviiiiiiniiiiiiiiiicicie, 11-151
III-9 Signal Processingcccocoeevviiccninininicncncninnnas I11-229
III-10 Analysis of Functionscccccoceevivivvnieicnnnnnnnnnes I1I-261
III-11 Image Processingcccoceveveiiiiiiiiiiiniicniciienns II1-291
ITI-12 StatiStiCS ..vvcveeereeceieieeeeeieeteeere e I11-323
III-13 Procedure WindOwsccccveeecvveeevrecceeeecreeeennen. I1I-335
I1I-14 Controls and Control Panelsccccecuveevveennenneen. I11-353
III-15 Platform-Related ISSUesccoveeevreeeveeecrerennen. I1I-389
II-16 Miscellanycccoevvveiiciiinininiiiiieccce I11-405

TIT-17 PreferenCeS oo eeeeeeeaene 111-425

Volume IV Programming
IV-1 Working with Commandsccccceceviiinniinnnne. IV-1
IV-2 Programming OVerview ... IV-19
IV-3 User-Defined Functionsccccceevvvininiiiiiinnnnnnes IV-25
IV-4 MAaCTOS ..oooveritiiinitiicetc e IV-95
IV-5 User-Defined Menusccccocoeuriiininiinininininnnnes IV-105
IV-6 Interacting with the Usercccoeiinii IV-121
IV-7 Programming Techniquesccccccoeeiiinnnnnnnes IV-143
IV-8 Debuggingccccoeevineiniiiniiiciiccicicieecnes IV-179
IV-9 Dependenciescccoveiriiiniiiciniiininiciiienne IV-195
IV-10 Advanced Programmingcccccoeeveveiinninnnennes IV-205
Volume V Reference
V-1 Igor Reference ..., V-1

Index

Volume | Getting Started

Table of Contents

[-1 Introduction to Igor Pro ..., I-1
I-2 Guided Tour of Igor Pro ..., I-11

Chapter

Introduction to Igor Pro

Introduction t0 IOT PIO ..cuouiiieieii s 2
IGOT ODJECLS «...evvet ettt 2
Waves — The Key IZ0T CONCEPLooueviiiiieiiicicie et 2
How Objects Relate ...ttt 3
MOTE ODBJECES ...ttt 4
IGOT"S TOOIDOXceieetiittct et 4
BUilt-IN ROUHINES ..ottt 4
User-Defined ProCedures..............oouiieiiiicieiice st 5
IZOT EXEENSIONSvviiiiieie et 5
Ig0r's USer INEEIfACEcucvviiei e 6
The Command WINAOWcoouiiiiiie e 6
Menus, Dialogs and COmMMANScoueemiieiiiieiiicc et 7
Using Igor for Heavy-Duty JODS ..o s 7
Ig0r DOCUMENEATION. ..ottt e 8
Igor Tips (Macintosh Only) ... 8
Status Line Help, Tool Tips and Context-Sensitive Help (Windows only).......cccccoevreiiiiinuennnnee. 8
The Igor Help SYStemM......ccuoviiiiiiicc s 8
The IOr ManUAL.........c.ooooiuiiiiiieiice ettt 9
Learning IGOT ..ot 9

Getting Hands-On EXPeTIiencCecccccuiiieiiiiiicieece et 9

Chapter I-1 — Introduction to Igor Pro

Introduction to Igor Pro

Igor Pro is an integrated program for visualizing, analyzing, transforming and presenting experimental
data.

Igor Pro’s features include:

* Publication-quality graphics

¢ High-speed data display

¢ Ability to handle large data sets

® Curve-fitting, Fourier transforms, smoothing, statistics, and other data analysis

e Waveform arithmetic

* Image display and processing

¢ Combination graphical and command-line user interface

* Automation and data processing via a built-in programming environment

¢ Extensibility through modules written in the C and C++ languages

Some people use Igor simply to produce high-quality, finely-tuned scientific graphics. Others use Igor as
an all-purpose workhorse to acquire, analyze and present experimental data using its built-in program-

ming environment. We have tried to write the Igor program and this manual to fulfill the needs of the entire
range of Igor users.

Igor Objects

The basic objects that all Igor users work with are:
¢ Waves

* Graphs

¢ Tables

* Page layouts

A collection of objects is called an “experiment” and is stored in an experiment file. When you open an
experiment, Igor recreates the objects that comprise it.

Waves — The Key Igor Concept

We use the term “wave” to describe the Igor object that contains an array of numbers. Wave is short for
“waveform”. The wave is the most important Igor concept.

Igor was originally designed to deal with waveform data. A waveform typically consists of hundreds to
thousands of values measured at evenly spaced intervals of time. Such data is usually acquired from a
digital oscilloscope, scientific instrument or analog-to-digital converter card.

The distinguishing trait of a waveform is the uniform spacing of its values along an axis of time or other quan-
tity. An Igor wave has an important property called “X scaling” that you set to specify the spacing of your
data. Igor stores the Y component for each point of a wave in memory but it computes the X component based
on the wave’s X scaling.

In the following illustration, the wave consists of five data points numbered 0 through 4. The user has set
the wave's X scaling such that its X values start at 0 and increment by 0.001 seconds per point. The graph
displays the wave's stored data values versus its computed X values.

I-2

Chapter I-1 — Introduction to Igor Pro

Igor computes a wave’s X values.

Igor stores a wave’s data values in memory.

Point |

number X value Data value

0 0 3.74 5.5

1 .001 4.59 5.0 -

2 .002 4.78 >

4.5
3 .003 5.49
4 .004 5.66 407
I I I I
* 0 1 2 3 4
X scaling ms

X scaling is a property of a wave that specifies In a graph of waveform data, Igor plots a
how to find the X value for a given point. wave’s data values versus its X values.

Waves can have from one to four dimensions and can contain either numeric or text data.

Igor is also capable of dealing with data that does not fit the waveform metaphor. We call this XY data. Igor
can treat two waves as an XY pair. In an XY pair, the data values of one wave supply the X component and
the data values of another wave supply the Y component for each point in the pair.

A few analysis operations, such as Fourier transforms, inherently work only on waveform data. They take
a wave’s X scaling into account.

Other operations work equally well on waveform or XY data. Igor can graph either type of data and its pow-
erful curve fitting works on either type.

Most users create waves by loading data from a file. You can also create waves by typing in a table, evalu-
ating a mathematical expression, acquiring from a data acquisition device, and accessing a database.

How Objects Relate

This illustration shows the relationships among Igor's basic objects. Waves are displayed in graphs and
tables. Graphs and tables are displayed in page layouts. Although you can display a wave in a graph or
table, a wave does not need to be displayed to exist.

Waves reside in memory.
Each wave has a unique name that you can assign to it.

You use a wave’s name to designate it for display [
or analysis or in a mathematical expression. - | Waves

The traces in a graph and columns in a table are
representations of waves. — Graph Table

Page layouts display multiple graphs and tables as
well as pictures and annotations for presentation. Page Layout

Each object has a name so that it can be referenced in an Igor command. You can explicitly set an object’s
name or accept a default name created by Igor.

Chapter I-1 — Introduction to Igor Pro

Graphs are used to visualize waves and to generate high-quality printouts for presentation. The traces in a
graph are representations of waves. If you modify a wave, Igor automatically updates graphs. Igor labels
the axes of a graph intelligently. Tick marks never run into one another and are always “nice” values no
matter how you zoom in or pan around.

In addition to traces representing waveform or XY data, a graph can display an image or a contour plot gen-
erated from 2D data.

Tables are used to enter, inspect or modify wave data. A table in Igor is not the same as a spreadsheet in
other graphing programs. A column in a table is a representation of the contents of a wave. The wave con-
tinues to exist even if you remove it from the table or close the table entirely.

Page layouts permit you to arrange multiple graphs and tables as well as pictures and annotations for pre-
sentation. If you modify a graph or table, either directly or indirectly by changing the contents of a wave,
Igor automatically updates its representation in a layout.

Both graphs and layouts include drawing tools for adding lines, arrows, boxes, polygons and pictures to
your presentations.

More Objects

Here are some additional objects that you may encounter:
¢ Numeric and string variables

¢ Data folders

* Notebooks

¢ Control panels

¢ 3D plots

® Procedures

A numeric variable stores a single number and a string variable stores a text string. Numeric and string vari-
ables are used for storing bits of data for Igor procedures.

A data folder can contain waves, numeric variables, string variables and other data folders. Data folders
provide a way to keep a set of related data, such as all of the waves from a particular run of an experiment,
together and separate from like-named data from other sets.

A notebook is like a text-editor or word-processor document. You can use a notebook to keep a log of results or
to produce a report. Notebooks are also handy for viewing Igor technical notes or other text documentation.

A control panel is a window containing buttons, checkboxes and other controls and readouts. A control panel
is created by an Igor user to provide a user interface for a set of procedures.

A 3D plot displays three-dimensional data as a surface, a scatter plot, or a path in space.

A procedure is a programmed routine that performs a task by calling Igor's built-in operations and func-
tions and other procedures. Procedures range from very simple to very complex and powerful. You can run
procedures written by WaveMetrics or by other Igor users. If you are a programmer or want to learn pro-
gramming, you can learn to write your own Igor procedures to automate your work.

Igor’s Toolbox

Igor's toolbox includes a wide range of built-in routines. You can extend it with user-defined procedures
written in Igor itself and separately-compiled Igor extensions (plug-ins) that you obtain from WaveMetrics,
from a colleague, from a third-party, or write yourself.

Built-In Routines

Each of Igor's built-in routines is categorized as a function or as an operation.

I-4

Chapter I-1 — Introduction to Igor Pro

A built-in function is an Igor routine, such as sin, exp or In, that directly returns a result. A built-in operation
is a routine, such as Display, FFT or Integrate, that acts on an object and may create new objects but does
not directly return a result.

The best way to get a sense of the scope of Igor's built-in routines is to scan the sections Built-In Operations
by Category on page V-1 and Built-In Functions by Category on page V-6 in the reference volume of this
manual.

For getting reference information on a particular routine it is usually most convenient to choose
Help—>Command Help and use the Igor Help Browser.

User-Defined Procedures

A user-defined procedure is a routine written in Igor’s built-in programming language by entering text in
a procedure window. It can call upon built-in or external functions and operations as well as other user-
defined procedures to manipulate Igor objects. Sets of procedures are stored in procedure files.

You can create Igor procedures by entering text in a procedure window.

Each procedure has a name
which you use to invoke it.

®06 Procedure

#pragma riGlobals=1 £# Use modern global access method. m

Function Medianiw, x1, €2} A Returns median value of wave w from x=x1 to x=x2.
Wave w
Yariable x1,x2

Yariable result

Duplicate /R={x1, %2} w, tempMedianWave A4 Make a clone of wave
Sort tempMedian'ave, tempMedianave £ Sart elone

SetScale/P x 0,1 tempMedian'ave

result = tempMedianWave! {numpnts{tempMedianawve) - 13723

Killwaves tempMedian'®ave

return result
End

MY & [Templates w | [Frocedures w | [Compile | | 559 FIrey

Procedures can call operations, functions or other procedures.
They can also perform waveform arithmetic.

Igor Extensions

Anextensionisa “plug-in” - a piece of external code that adds functionality to Igor. We use the terms “external
operation” or “XOP” and “external function” or “XFUNC” for operations and functions added by extensions.
An extension can add menus, dialogs and windows to Igor as well as operations and functions.

To write an extension, you must be a C or C++ programmer and you need the optional Igor External Oper-
ations Toolkit. See Creating Igor Extensions on page IV-177.

Although creating an extension is a job for a programmer, anyone can use an extension. The Igor installer auto-
matically installs commonly used extensions in "Igor Pro Folder/Igor Extensions". These extensions are available
for immediate use. An example is the Excel file loader accessible through Data—>Load Waves.

Less commonly used extensions are installed in "Igor Pro Folder/More Extensions". Available extensions are
described in the “XOP Index” help file (choose Windows—>Help Windows—>XOP Index.ihf). To activate an
extension, see Activating Extensions on page I11-420.

Chapter I-1 — Introduction to Igor Pro

Igor’s User Interface

Igor uses a combination of the familiar graphical user interface and a command-line interface. This
approach gives Igor both ease-of-use and programmability.

The job of the user interface is to allow you to apply Igor’s operations and functions to objects that you
create. You can do this in three ways:

* Via menus and dialogs

¢ By typing Igor commands directly into the command line

¢ By writing Igor procedures

The Command Window

The command window is Igor’s control center. It appears at the bottom of the screen.

At the bottom of the command window is the command line. Above the red divider is the history area
where executed commands are stored for review. Igor also uses the history area to report results of analyses
like curve-fitting or waveform statistics.

066 Introduction to Igor — The name of the current
~TagiKiN=testt experiment appears as the

=TagN=text1/F=0 ywwal, 0,"When time i W0X, Magnitude i Woy™ . .
sMake wavel, wave1, wawveZ, waved, waved, waves, waved, wave? title of the command window.

Display waveld wave waveZ naved waved

Display
-Disglag

|
When Igor executes a command it
transfers it to the history area.

ANARIE =)]

Help Browser button.

You enter commands in
the command line.

= Introduction to lgor

=Make wavel wavel, waveZ waved, waved whved waveb, wave?
=Edit wavel, wavel, waveZ, waved, waved waved, waveb, waver?
mwaved = logiwave3fwave2)

=Display wavel, wavel, wave2, wavad

=AppendToGraph/R waved

Ly I

23] 4

I-6

Chapter I-1 — Introduction to Igor Pro

Menus, Dialogs and Commands
Menus and dialogs provide easy access to the most commonly-used Igor operations.
When you choose a menu item associated with an Igor operation, Igor presents a dialog. As you use the

dialog, Igor generates a command and displays it in the command box near the bottom of the dialog. When
you click the Do It button, Igor transfers the command to the command line where it is executed.

When you choose a menu item... ...lgor presents a dialog.
New Graph... — New Graph
New Table... Y Wave(s) X Wave
New Layou... —
New > @ waveo [More Choices) _calculated_
— =~ i wavel wavel
Control - & wavez = wavel
@b wave3] From Target wave?
Help Browser &y waves &y wave3
& waves waved
& waves waves
@ wave? waveb
wave?
ME— R FMEe—— R

. Axis: [left 4]] Swap Trace X & Y Axes Axis: [bottom o]
The dialog generates a command

suitable for execution in Igor’s il style: | _none_ B3]

command line.

Display waved,wavel,wavae, navad, waved

Transfers the command to the

command line and executes it. ——&"Peit) (ToCmdLine) (ToClip) (Help) (Cancel "-.4

Copies the command to the command line Copies the command to the Clipboard.
where you can edit it and then execute it. Useful when you are writing Igor procedures.

As you get to know Igor, you will find that some commands are easier to invoke from a dialog and others
are easier to enter directly in the command line.

There are some menus and dialogs that bypass the command line. Examples are the Save Experiment and
Open Experiment items in the File menu.

Using Igor for Heavy-Duty Jobs

If you generate a lot of raw data or need to do custom technical computing, you will find it worthwhile to
learn how to put Igor to heavy-duty use. It is possible to automate some or all of the steps involved in load-
ing, processing and presenting your data. To do this, you must learn how to write Igor procedures.

Igor includes a built-in programming environment that lets you manipulate waves, graphs, tables and all
other Igor objects. You can invoke built-in operations and functions from your own procedures to build
higher-level operations customized for your work.

Learning to write Igor procedures is easier than learning a lower-level language such as FORTRAN or C. The
Igor programming environment is interactive so you can write and test small routines and then put them

together piece-by-piece. You can deal with very high level objects such as waves and graphs but you also have
fine control over your data. Nonetheless, it is still programming. To master it requires an effort on your part.

The Igor programming environment is described in detail in Volume IV Programming. You can get started
by reading the first three chapters of that volume.

You can also learn about Igor programming by examining the WaveMetrics Procedures and example exper-
iments that were installed on your hard disk.

Chapter I-1 — Introduction to Igor Pro

Igor Documentation
Igor includes an extensive online help system and a comprehensive PDF manual.

The online help provides guided tours, context-sensitive tips, general usage information for all aspects of
Igor, and reference information for Igor operations, functions and keywords.

The PDF manual contains mostly the same information except for the context-sensitive tips.

The PDF manual, being in book format, is better organized for linear reading while the online help is
usually preferred for reference information.

Igor Tips (Macintosh only)

Igor Tips present brief explanations of menus, dialogs and other user interface items.You turn Igor Tips on
and off using the Help menu. When on, tips appear as you move your mouse over icons, menu items and
dialog items.

m Edit Data Analysis Macros Windows Graph Misc Help

| New Experiment 3N
Open Experiment... F0

Turn Igor Tips on using the Help menu or by
pressing Option-Help.

Save Experiment

Saves the current collection of waves, graphs,

tables, procedures and other objects in an Igor provides extensive Igor Tips for menu items,
Igor experiment file. dialog items and many other user-interface items.

Igor Tips provides a bit of extra information
on the topic of your choice.

Status Line Help, Tool Tips and Context-Sensitive Help (Windows only)
Igor’s Windows help system provides three ways to get immediate help for an icon, a menu item, or a
dialog item.

Status line help automatically shows brief descriptions of menu items and icons in the status line area at the
bottom of the main Igor Pro window.

Tool tips provide very brief descriptions of icons when you point the cursor at the item.

Context-sensitive help displays a pop-up window containing information about the menu item, icon or
dialog item of interest. Context-sensitive help is accessed as follows::

Menus and Icons: Press Shift+F1 to get the question-mark cursor 2z and click the item of interest.

Dialogs: Click the question-mark button in the upper-right corner of dialog to get the
question-mark cursor 2, then click a dialog item.

The Igor Help System

The Help menu provides access to Igor's help system, primarily through the Igor Help Browser.

® Use the Help menu or press Help (Macintosh) or F1 (Windows) to display the Igor Help Browser.
¢ Use the Igor Help Browser Help Topics tab to browse help topics.

* Use the Igor Help Browser Shortcuts tab to get a list of handy shortcuts and techniques.

¢ Use the Igor Help Browser Command Help tab to get reference information on Igor operations and
functions. You can also right-click operation and function names in Igor windows to access the refer-
ence help.

I-8

Chapter I-1 — Introduction to Igor Pro

* Use the Igor Help Browser Search tab to search Igor help, procedure and example files.

Most of the information displayed by the help browser comes from help files that are automatically loaded
at launch time. The Windows—>Help Windows submenu provides direct access to these help files.

The Igor Manual
The Igor PDF manual resides in "Igor Pro Folder/Manual". You can access it by choosing Help—>Manual.

The manual consists of five volumes and an index.
Volume I contains the Getting Started material, including the Guided Tour of Igor Pro.

Volumes II and III contain general background and usage information for all aspects of Igor other than pro-
gramming.

Volume IV contains information for people learning to do Igor programming.
Volume V contains reference information for Igor operations, functions and keywords.

Hard copy of the manual can be purchased from http://www.lulu.com/wavemetrics.

Learning Igor

To harness the power of Igor, you need to understand its fundamental concepts. Some of these concepts are
familiar to you. However, Igor also incorporates a few concepts that will be new to you and may seem
strange at first. The most important of these are waves and experiments.

In addition to this introduction, the primary resources for learning Igor are:
¢ The Guided Tour of Igor Pro in Chapter I-2

The guided tour shows you how to perform basic Igor tasks step-by-step and reinforces your under-
standing of basic Igor concepts along the way. It provides an essential orientation to Igor and is
highly-recommended for all Igor users.

¢ The Igor Pro PDF manual and online help files

You can access the PDF manual through Igor's Help menu or by opening it directly from the Manual
folder of the Igor Pro Folder where Igor is installed.

You can access the help files through the Igor Help Browser (choose Help—>Igor Help Browser) or
directly through the Windows—Help submenu.
e The "Examples" experiments

The example experiments illustrate a wide range of Igor features. They are stored in the Examples
folder in the Igor Pro Folder. You can access them using the File—>Example Experiments submenu
or directly from the Examples folder of the Igor Pro Folder where Igor is installed.

You will best learn Igor through a combination of doing the guided tour, reading select parts of the manual
(see suggestions following the guided tour), and working with your own data.

Getting Hands-On Experience

This introduction has presented an overview of Igor, its main constituent parts, and its basic concepts. The
next step is to get some hands-on experience and reinforce what you have learned by doing the Guided
Tour of Igor Pro on page I-11.

I-9

http://www.lulu.com/wavemetrics

Chapter I-1 — Introduction to Igor Pro

I-10

Chapter

Guided Tour of Igor Pro

OVOIVIOW ...ttt bbb bbb bbbt bbbt et ns 13
TOITINOLOZY . .ecvcvteeete ettt bbbttt 13
ADOUL the TOUT ..o 13
Guided Tour 1 - General TOUT ...t 14
Launching IZOr PrO.......ui et 14
Entering Data.........cooiiiiii s 14
Making @ Graphicucuiiie s 16
Touching Up @ Graphi ... s 16
AddIng @ Leendooiiii e s 18
AAAING 8 TAG evveeiei e 18
USING PreferenCesc.ovoiieriiieee et 20
Making a Page LayOutc.couieiiiiicie ettt 20
SaVING YOUT WOTK ..ottt 22
L0ading Data.......ccuiiiiicii e 22
Appending t0 @ Graph ... s 24
OffSEtting @ TTACEcviiceiee ettt 24
Unoffsetting @ TIACEcooocueiiicic e 25
Drawing in @ Graphi.......cooi s 25
Making a Window Recreation MaCIO..........cccueiiiieieiiiicie ettt 27
Recreating the Graph ... s 27
SaVING YOUT WOTK ..ottt 27
Using Igor Documentation ...t 28
Graphically Editing Data.........ccocueuiiuiieioiiieieci ettt 29
Making a Category Plot (Optional)..........ccceuiiiiiiiiiiiicc s 30
Category Plot Options (Optional)ccuieueieiiiiieic e 31
The Command WINAOW ...t 33
BrowSing WaVEScoiuiiiiiiiiiiiiiitt e 35
Using the Data BrOWSeT ...t 35
Synthesizing Data ... s 35
Zooming and Panning ... s 36
Making a Graph with MUltiple AXeS.........cccceiiiiiiiiiiiicieec s 37
SaVING YOUT WOTK ..ottt 39
USINE CUISOTS ...ttt st b bbb bbbt bbbt 39
Removing a Trace and AXIS ..ottt 40
Creating a Graph with Stacked AXeS.........ccoouiiiiiiiiii 40
Appending t0 @ LayOULt ..o s 42
SaVING YOUT WOTK ..ottt bbb 42
Creating CONEIOIS.......ouiviieie et 43
Creating @ DependenCy ... 44
SaVING YOUT WOTK ..ottt e 45
End of the General TOUT ...t 46
Guided Tour 2 - Data ANALySisccooiuiiiiiiicice e 47

Launching IZOr PrO.......i s 47

Chapter I-2 — Guided Tour of Igor Pro

I-12

Creating Synthetic Data.........cocoviiiiiii e 47
QUICK CUIVE Fit t0 @ GaUSSIAN ..cvviiviiieiiciieceiecteeete ettt ettt e e eetseetesenteestesereeenseesnesenseensees 48
More Curve Fitting to a Gaussian ... 49
SOTHNIE ottt 49
Fitting t0 @ SUDTANGEccviviviiiiiiiii e 50
Extrapolating a Fit After the Fit is DOne........coooiiiiiiiiiiccccce e 51
APPENING @ FAt ..o 52
Guided Tour 3 - Histograms and Curve Fitting...........ccccovviiiiiiinninnnniirncnnrenesseeeeeseeene 54
Launching IZOT Pro.......cocoviiiiiiii e 54
Creating Synthetic Data........cccoviiiiiiiiiii e 54
Histogram of White NOISE..........ccouvuviiiiiriiriiiic e 54
Histogram of Gaussian NOISEccueuruiriiiniiiniiiii e 55
Curve Fit of Histogram Data.........ccccuviiiiiiiiiiiiiic e 56
Curve Fit Residuals (Optional)ccccvviriiiiiriririiiiiiiciirrrinrrrsese s 58
Writing a Procedure (Optional)c.ccccciiiiiiiiiiiiiiicicieeesee e 60
Saving a Procedure File (Optional)cccccovviiiiiiniiiiiiiiiiri e 63
Including a Procedure File (Optional)c.cccoovviririniiinnnniiiri s 63
For Further EXPLOTationcccoviiiiiiiiiii e 65

Chapter I-2 — Guided Tour of Igor Pro

Overview

In this chapter we take a look at the main functions of Igor Pro by stepping through some typical operations.
Our goal is to orient you so that you can comfortably read the rest of the manual or explore the program on
your own. You will benefit most from this tour if you actually do the instructed operations on your com-
puter as you read this chapter. Screen shots are provided to keep you synchronized with the tour.

Terminology
If you have read Chapter I-1, Introduction to Igor Pro, you already know these terms.

Experiment The entire collection of data, graphs and other windows, program text and
whatnot that make up the current Igor environment or workspace.

Wave Short for waveform, this is basically a named array of data with optional extra
information.
Name Because Igor contains a built-in programming and data transformation

language, each object must have a unique name.

Command This is a line of text that performs some task. Igor is command-driven so that it
can be easily programmed.

About the Tour

This tour consists of three sections: Guided Tour 1 - General Tour on page I-14, Guided Tour 2 - Data Anal-
ysis on page 1-47, and Guided Tour 3 - Histograms and Curve Fitting on page I-54.

The General Tour is a rambling exploration intended to introduce you to the way things work in Igor and give
you a general orientation. This tour takes 2 to 4 hours but does not have to be performed in one sitting.

The second and third tours guide you through Igor’s data analysis facilities including simple curve fitting.

When you’ve completed the first tour you may prefer to explore freely on your own before starting the sec-
ond tour.

I-13

Chapter I-2 — Guided Tour of Igor Pro

Guided Tour 1 - General Tour

In this exercise, we will generate data in three ways (typing, loading, and synthesizing) and we will gener-
ate graph, table, and page layout windows. We will jazz up a graph and a page layout with a little drawing
and some text annotation. At the end we will explore some of the more advanced features of Igor Pro.

Launching Igor Pro
The Igor Pro application is typically installed in:

/Applications/Igor Pro Folder (Macintosh)

C:\Program Files\WaveMetrics\Igor Pro Folder (Windows)

1.

Double-click the Igor Pro application file on your hard disk.

On Windows you can also start Igor using the Start menu.

If Igor was already running, choose the File—>New Experiment menu item.
Use the Misc menu to turn preferences off.

Turning preferences off ensures that the tour works the same for everyone.

Entering Data

I-14

1.

If a table window is showing, click in it to bring it to the front.

When Igor starts up, it creates a new blank table unless this feature is turned off in the Miscella-
neous Settings dialog. If the table is not showing, perform the following two steps:

1a. Choose the Windows—>New Table menu item.
The New Table dialog appears.
1b. Click the Do It button.
A new blank table is created.
Type “0.1” and then press Return or Enter on your keyboard.

This creates a wave named “wave(0” with 0.1 for the first point. Entering a value in the first row
(point 0) of the first blank column automatically creates a new wave.

Chapter I-2 — Guided Tour of Igor Pro

Type the following numbers, pressing Return or Enter after each one:

1.2
1.9
2.6
4.5
5.1
5.8
7.8
8.3
9.7

Your table should look like this:

rﬁ TableQ:wave(E]@W
R10 L[| =

Fuoint wiave]

0.1 -
1.2
1.9
2B
4.5
5.1
5.8
7.8
8.3
8.7

J | v[4

Click in the first cell of the first blank column.

O 00~ 3 M e LD —= 3

—

Enter the following numbers in the same way:

-0.12
-0.08
1.3

1
0.54
0.47
0.44
0.2
0.24
0.13

Choose Data—Rename.
Click “wave0” in the list and then click the arrow icon.
Replace “wave0” with “time”.

Notice that you can’t use the name “time” because it is the name of a built-in string function. We
apologize for usurping such a common name.

Change the name to “timeval”.
Select “wavel” from the list, click the arrow icon, and type “yval”.
Click Do It.

Notice the column headers in the table have changed to reflect the name changes.

I-15

Chapter I-2 — Guided Tour of Igor Pro

Making a Graph

1.

Choose the Windows—>New Graph menu item.

The New Graph dialog will appear. This dialog comes in a simple form that most people will use
and a more complex form that you can use to create complex multiaxis graphs in one step.

If you see a button labeled Fewer Choices, click it.

The button is initially labeled More Choices because the simpler form of the dialog is the default.
In the Y Wave(s) list, select “yval”.

In the X Wave list, select “timeval”.

Click Do It.

A simple graph is created.

Touching up a Graph

I-16

1.

gk @ N

Position the cursor directly over the trace in the graph and double-click.

The Modify Trace Appearance dialog appears. You could also have chosen the corresponding
menu item from the Graph menu.

Note: The Graph menu appears only when a graph is the target window. The target window is
the window that menus and dialogs act on by default.

Choose Markers from the Mode pop-up menu.

Select the open circle from the pop-up menu of markers.
Set the marker color to blue.

Click Do It.

Your graph should now look like this:

eoe Craph0:yval vs timeval

o]
1.2 4

1.0 o
0.5
0.6
0.4 - ©

0.2 - o ©

0.0+

Position the cursor over the bottom axis line.

The cursor changes to this shape: }. This indicates the cursor is over the axis and also that you can
offset the axis (and the corresponding plot area edge) to a new position.

Double-click directly on the axis.

The Modify Axis dialog appears. If another dialog appears, click cancel and try again, making
sure the cursor is showing.

Note the Live Update checkbox in the top/right corner of the Modify Axis dialog. When it is
checked, changes that you make in the dialog are immediately reflected in the graph. When it is
unchecked, the changes appear only when you click Do It. The Modify Axis dialog is the only one
with a Live Update checkbox.

Chapter I-2 — Guided Tour of Igor Pro

10.
11.
12.
13.
14.

15.

16.

17.
18.
19.
20.

21.

22,
23.
24.

If it is not already showing, click the Axis tab.
Choose On from the Mirror Axis pop-up.

Click the Auto/Man Ticks tab.

Click the Minor Ticks checkbox so it is checked.
Click the Ticks and Grids tab.

Choose Inside from the Location pop-up.

Choose the left axis from the Axis pop-up menu in the top-left corner of the dialog and then
repeat steps 8 through 13.

Click Do It.
Your graph should now look like this:

IIII|IIIID|IIII|IIIIIIII|IIIIIIII|IIIIIIII|II

1.2

1.0

0.

0.6

0.4

0.2

0.0

II|IIQ|III|III|III|IIIIIIIIII

o

I SIS T T N O SO AN A O 0 A MU

2 4] g

Again double-click the bottom axis.

The Modify Axis dialog appears again.

Click the Axis tab.

Uncheck the Standoff checkbox.

Choose the left axis from the Axis pop-up menu and repeat step 18.
Click Do It.

Notice that some of the markers now overlap the axes. The axis standoff setting pushes out the
axis so that markers and traces do not overlap the axis. You can use Igor’s preferences to ensure
this and other settings default to your liking, as explained below.

Double-click one of the tick mark labels (such as “6”) on the bottom axis.

The Modify Axis dialog reappears, this time with the Axis Range tab showing. If another dialog
or tab appears, cancel and try again, making sure to double click one of the tick mark labels on
the bottom axis.

Choose “Round to nice values” from the pop-up menu that initially reads “Use data limits”.
Choose the left axis from the Axis pop-up menu and repeat step 22.
Click Do It.

Notice that the limits of the axes now fall on “nice” values.

I-17

Chapter I-2 — Guided Tour of Igor Pro

Adding a Legend

1.

NS 9o

Choose the Graph—>Add Annotation menu item.

The Add Annotation dialog appears.

Click the Text tab if it is not already selected.

Choose Legend from the pop-up menu in the top-left corner.

Igor inserts text to create alegend in the Annotation text entry area. The Preview area shows what
the annotation will look like. Note that the text \s (yval) generates the symbol for the yval
wave. This is an “escape sequence”, which creates special effects such as this.

In the Annotation area, change the second instance of “yval” to “Magnitude”.
Click the Frame tab and choose Box from the Annotation Frame pop-up menu.
Choose Shadow from the Border pop-up menu.

Click the Position tab and choose Right Top from the Anchor pop-up menu.

Specifying an anchor point helps Igor keep the annotation in the best location as you make the
graph bigger or smaller.

Click Do It.

Adding a Tag

I-18

1.

=o»N

® N W

Choose the Graph—>Add Annotation menu item.

Choose Tag from the pop-up menu in the top-left corner.

In the Annotation area of the Text tab, type “When time is ”.

Choose “Attach point X value” from the Dynamic pop-up menu in the Insert area of the dialog.
Igor inserts the \ 0X escape code into the Annotation text entry area.

In the Annotation area, add “, Magnitude is ”.

Choose “Attach point Y value” from the Dynamic pop-up menu.

Switch to the Frame tab and choose None from the Annotation Frame pop-up menu.

Switch to the Tag Arrow tab and choose Arrow from the Connect Tag to Wave With pop-up
menu.

Chapter I-2 — Guided Tour of Igor Pro

9. Click the Position tab and choose “Middle center” from the Anchor pop-up menu.
The dialog should now look like this:

r]

Add Annotation

Annotation: | Tag =) Name: textl
[Text Frame | Position | Symbaols Tag Arrow ColorScale Main ColorScale Axis Labels ColarScale Ticks }
Tag on: | yval F Atp= 0 Atx= 0
Anchor: | Middle Center | & If Offscreen: | draw at edge %
Rotation: [Fixed Angle (degrees)) o [
Position: ' Mowveahle ==
XY Offser: 5.00 5.00

Preview I3

 To Clip 3
‘Whentime i 0.1, Magnitude B 012 —
| To Cmd Line |
.
~ - 00
{ Help]
n

£ Cancel 3 y
10. Click Do It.

Your graph should now look like this:

06 Graph0:yval vs timeval
1.4 |||||||||CJ||||I||||I|||||||||I|||||||||I|||||||||

1.0
0.s
0.6
0.4
0.2

o]

oo

o]

hen time iz 0.1, Magnitude iz -0.12
_|:|2 NI RN RN NN SN RN RN AR NN RNl RN N RN

0 2 4 & g 10

&
The tag is attached to the first point. An arrow is drawn from the center of the tag to the data point
but you can’t see it because it is hidden by the tag itself.
11. Position the cursor over the text of the tag.

The cursor changes to a hand. This indicates you can reposition the tag relative to the data point
it is attached to.

12. Drag the tag up and to the right about 1 cm.
You can now see the arrow.
13. With the cursor over the text of the tag, press Option (Macintosh) or Alt (Windows).

The cursor changes to this shape: . (You may need to nudge the cursor slightly to make it
change.)

I-19

Chapter I-2 — Guided Tour of Igor Pro

14.

15.

16.
17.

While pressing Option (Macintosh) or Alt (Windows), drag the box cursor to a different data point.

The tag jumps to the new data point and the text is updated to show the new X and Y values. Option-
drag (Macintosh) or Alt-drag (Windows) the tag to different data points to see their X and Y values.

Notice that the tip of the arrow touches the marker. This doesn’t look good, so let’s change it.
Double-click the text part of the tag.

The Modify Annotation dialog appears.

Click the Tag Arrow tab and change the Line/Arrow Standoff from “Auto” to “10”.

Click the Change button.

The tip of the arrow now stops 10 points from the marker.

Using Preferences

If you have already set preferences to your liking and do not want to disturb them, you can skip this section.

1.
2.

® N o T e

10.
11.
12.
13.

Use the Misc menu to turn preferences on.

Click the graph window if it is not already active.

Choose the Graph—Capture Graph Prefs menu item.

The Capture Graph Preferences dialog appears.

Click the checkboxes for XY plot axes and for XY plot wave styles.
Click Capture Preferences.

Choose Windows—>New Graph.

Choose “yval” as the Y wave and “timeval” as the X wave.

Click Do It.

The new graph is created with a style similar to the model graph.
Press Option (Macintosh) or Alt (Windows) while clicking the close button of the new graph.
The new graph is killed without presenting a dialog.

Choose Graph—>Capture Graph Prefs.

Click the checkboxes for XY plot axes and for XY plot wave styles.
Click Revert to Defaults.

Use the Misc menu to turn preferences off.

We turn preferences off during the guided tour to ensures that the tour works the same for every-
one. This is not something you would do during normal work.

Making a Page Layout

I-20

1.

Choose the Windows—>New Layout menu item.

The New Page Layout dialog appears. The names of all tables and graphs are shown in the list.
In the Objects to Lay Out list, select GraphO.

Command-click (Macintosh) or Ctrl-click (Windows) on Table0.

Click Do It.

A page layout window appears with a Table0 object on top of a GraphO object.

The layout initially shows objects at 50% but you may prefer to work at 100%. You can use the pop-
up menu in the lower left corner of the window to change magnification.

Click the Table0 object in the layout window.

The table object becomes selected, resize handles are drawn around the edge and the cursor
becomes a hand when over the table.

Chapter I-2 — Guided Tour of Igor Pro

Click in the middle of the table and drag it so you can see the right edge of the table.
Position the cursor over the small black square (handle) in the middle of the right side of the table.
The cursor changes to a two headed arrow indicating you can drag in the direction of the arrows.
8. Drag the edge of the table to the left until it is close to the edge of the third column of numbers.
You need only get close — Igor snaps to the nearest grid line.
9. In a similar fashion, adjust the bottom of the table to show all the data but without any blank lines.

10. Drag the table and graph to match the picture:

e 00 Layout0:Graph0,Table0

S0% w|Graphd Left: 16.00 |Top:1258 |width:0.00 |Heig A

11. Click this icon in the tool palette: .
This activates the drawing tools.

12. Click this icon in the drawing tool palette: .
This is the polygon tool.

I-21

Chapter I-2 — Guided Tour of Igor Pro

13.

14.

15.

16.
17.

18.

Click once just to the right of the table, click again about 2 cm right and 1 cm down and finally dou-
ble-click a bit to the right of the last click and just above the graph.

first click
second click

final doukie-click

The double-click exits the “draw polygon” mode and enters “edit polygon mode”. If you wish to
touch up the defining vertices of the polygon, do so now by dragging the handles (the square
boxes at the vertices).

Click the Arrow tool in the palette.

This exits polygon edit mode.

Click the polygon to select it.

Click the draw environment pop-up icon, , and choose At End in the Line Arrow submenu.
Click this icon in the tool palette: .

This is the operate icon. The drawing tools are replaced by the normal layout tools.

We are finished with the page layout for now.

Choose Windows—>Send To Back.

Saving Your Work

1.

S 9k W

Identify or create a folder on your hard disk for saving your Igor files.

For example, you might create a folder for your Igor files in your user folder.

Don’t save your Igor files in the Igor Pro folder as this complicates updating Igor and making back-
ups.

Choose File—Save Experiment.

The save file dialog appears.

Make sure that Packed Experiment File is selected as the file format.

Type “Tour #1 a.pxp” in the name box.

Navigate to the folder where you want to keep your tour files.

Click Save.

The “Tour #1a.pxp” file contains all of your work in the current experiment, including waves that
you created, graphs, tables and page layout windows.

If you want to take a break, you can quit Igor Pro now.

Loading Data

Before loading data we will use a Notebook window to look at the data file.

I-22

0.

If you are returning from a break, launch Igor and open your “Tour #1 a.pxp” experiment file.
Then turn off preferences using the Misc menu.

Opening the “Tour #1 a.pxp” experiment file restores the Igor workspace to the state it was in when
you saved the file. You can open the experiment file by using the Open Experiment item in the File
menu or by double-clicking the experiment file.

Choose the File—>Open File—>Notebook menu item.

Chapter I-2 — Guided Tour of Igor Pro

Navigate to the folder “Igor Pro Folder:Learning Aids:Sample Data” folder and open “Tutorial
Data #1.txt.”

A Notebook window showing the contents of the file appears. If desired, we could edit the data and
then save it. For now we just observe that the file appears to be tab-delimited (tabs separate the col-
umns) and contains names for the columns. Note that the name of the first column will conflict with
the data we just entered and the other names have spaces in them.

Click the close button or press Command-W (Macintosh) or Ctrl+W (Windows).

A dialog appears asking what you want to do with the window.

Click the Kill button.

The term Kill means to “completely remove from the experiment”. The file will not be affected.
Now we will actually load the data.

Choose Data—>Load Waves—>Load Delimited Text.

An Open File dialog appears.

Again choose “Tutorial Data #1.txt” and click Open.

The Loading Delimited Text dialog appears. The name “timeval” is highlighted and an error mes-
sage is shown. Observe that the names of the other two columns were fixed by replacing the
spaces with underscore characters.

Change “timeval” to “timeval2”.
The dialog should now look like this:

Loading Delimited Text |
Context from "Tutorial data #1" =
timneval voltage 1 voltage 2 —

—0.0085475156 0.0061244201

0.43045044 0.0089044189 —-0.0115843567

LE7983398 0.01160263 0.011473119

79116821 0.0155928303 0.01064331

.86624146 0.016467132 —-0.024645537

96069336 —0.006260%986 0.016607666 vl
I

=
L I Y s O e |

— Provide "W ave Mames

ItimevaIZ voltage_1 voltage_#

¥ Diouble precision Column Humber: 0 Skip E-:ulumnl

[T Owervite existing waves Colurnn Forrmat; INumber j

[Make table

Hep | ouit |

Click the Make Table box to select it and then click Load.

The data is loaded and a new table is created to show the data.

Click the close button of the new table window.

A dialog is presented asking if you want to create a recreation macro.

I-23

Chapter I-2 — Guided Tour of Igor Pro

10.

Click the No Save button.

The data we just loaded is still available in Igor. A table is just a way of viewing data and is not
necessary for the data to exist.

The Load Delimited Text menu item that you used is a shortcut that uses default settings for loading delim-
ited text. Later, when you load your own data files, choose Data—>Load Waves—>Load Waves so you can
see all of the options.

Appending to a Graph

0.

© *® 3

If necessary, click in GraphO to bring it to the front.
The Graph menu is available only when the target window is a graph.
Choose the Graph—>Append Traces to Graph menu item.

The Append Traces dialog appears. It is very similar to the New Graph dialog that you used to
create the graph.

In the Y Wave(s) list, select voltage_1 and voltage_2.
In the X Wave list, select timeval2.
Click Do It.

Two additional traces are appended to the graph. Notice that they are also appended to the Leg-
end.

Position the cursor over one of the traces in the graph and double-click.

The Modify Trace Appearance dialog appears with the trace you clicked on already selected.
If necessary, select voltage_1 in the list of traces.

Choose dashed line #2 from the Line Style pop-up menu.

Select voltage_2 in the list of traces.

Choose dashed line #3 from the Line Style pop-up menu.

Click Do It.

Your graph should now look like this:

eae CraphO:yval vs timeval;...

1.4;.... e M) MAs Lhaad nanatingd
1.2 2 Magnitude] 3
5 woltage_1 E
1oE P - - - voltage_2|
0.8 L. whentime is 501, Magnitode is 0.47 =
06 BT 4 4/ =
0.4f § Tl B0 3
o i '-h;—_:\‘___:_ . E
0.2F .; ! ""'h.}';__-_-:_(_:zq_?___.% —
- ; SRR

0.a 5*— ?*'('} .
) n N T EE T PR TE PN AT SRS T N SR TN PR P N
0 z 4 f g 10

Offsetting a Trace

1.

I-24

Position the cursor directly over the voltage_2 trace.

The voltage_2 trace has the longer dash pattern.

Chapter I-2 — Guided Tour of Igor Pro

Press and hold the mouse button for about 1 second.

An XY readout appears in the lower-left corner of the graph and the trace will now move with the
mouse.

With the mouse button still down, press Shift while dragging the trace up about 1 cm and release.
The Shift key constrains movement to vertical or horizontal directions.

You have added an offset to the trace. If desired, you could add a tag to the trace indicating that
it has been offset and by how much.

Unoffsetting a Trace

1.

Choose the Edit—>Undo Trace Drag menu item.

You can undo many of the interactive operations on Igor windows if you do so before performing
the next interactive operation.

Choose Edit—>Redo Trace Drag.
The following steps show how to remove an offset after it is no longer undoable.
Double-click the voltage_2 trace.

The Modify Trace Appearance dialog will appear with voltage_2 selected. (If voltage_2 is not
selected, click it to select it.) The Offset checkbox will be checked.

Click the Offset checkbox.

This turns offset off for the selected trace.

Click the Offset checkbox again.

The Trace Offset dialog appears showing the offset value you introduced by dragging.
Click the Cancel button or press Escape.

The Offset checkbox should still be unchecked.

Click Do It.

The voltage_2 trace is returned to its original position.

Drawing in a Graph

1.
2.

If necessary click in GraphO to bring it to the front.

Choose the Graph—>Show Tools menu item or press Command-T (Macintosh) or Ctrl+T
(Windows).

A toolbar is added to the graph. The second icon from the top () is selected indicating that
the graph is in drawing mode as opposed to normal (or “operate”) mode.

Click the top icon () to go into normal mode.

Normal mode is for interacting with graph objects such as traces, axes and annotations. Drawing
mode is for drawing lines, rectangles, polygons and so on.

Click the second icon to return to drawing mode.

Press Option (Macintosh) or Alt (Windows) and press and hold down the mouse button while
the cursor is in the draw environment icon (tree and grass).

A pop-up menu showing the available drawing layers and their relationship to the graph elements
appears (the items in the menu are listed in back-to-front order).

Choose UserBack from the menu.
We will be drawing behind the axes, traces and all other graph elements.

Click the rectangle tool and drag out a rectangle starting at the upper-left corner of the plot
area (y=1.4, x=0 on the axes) and ending at the bottom of the plot area and about 1.5 cm in width
(y=-0.2, x=1.6).

I-25

Chapter I-2 — Guided Tour of Igor Pro

8.

10.
11.

12.
13.
14.
15.

16.
17.

18.

19.

20.

21.

22.

23.

24.
25.
26.

I-26

Click the line tool and draw a line as shown, starting at the left (near the peak of the top trace)
and ending at the right:

eoe GraphQ:yval vs timewval;...
1_2:_ < Magnitude =
O 1 s T violtage_1]
* 1.0F o - - - wvoltage_2 |
L 0.8 o . =
- E ; \\-.HWhen time is 5.1, Magnitude iz 0.47 .
O, IZI.E-:— f{ \“v;_ o 3
—, 0.4F } } o E
C ‘--EI-__-: B o 1
g; 02:— ; /_.?_}_'\--\.__,_-E:._:
2 0.0 for—rd -
)ix _|:|_2::|||||||||||I|||||||||I|||||||||I|||||||||I||||:
%‘“ 1 Z 4 f g 10

A

Click the draw environment icon and choose At Start from the Line Arrow item.

Click the Text tool icon .

Click just to the right of the line you have just drawn.

The Create Text dialog appears.

Type “Precharge”.

From the Anchor pop-up menu, choose “Left center”.

Click Do It.

Click the graph’s zoom button (Macintosh) or maximize button (Windows).

Notice how the rectangle and line expand with the graph. Their coordinates are measured rela-
tive to the plot area (rectangle enclosed by the axes).

Click the graph’s zoom button (Macintosh) or restore button (Windows).
Click the Arrow tool and then double-click the rectangle.

The Modify Rectangle dialog appears showing the properties of the rectangle.
Enter 0 in the Thickness box in the Line Properties section.

This turns off the frame of the rectangle.

Choose Light Gray from the Fill Mode pop-up menu.

Choose black from the Fore Color pop-up menu under the Fill Mode pop-up menu.
Click Do It.

Observe that the rectangle forms a gray area behind the traces and axes.
Again, double-click the rectangle.

The Modify Rectangle dialog appears.

From the X Coordinate pop-up menu, choose Axis Bottom.

The X coordinates of the rectangle will be measured in terms of the bottom axis — as if they were
data values.

Press Tab until the X0 box is selected and type “0”.
Tab to the YO box and type “0”.
Tab to the X1 box and type “1.6”.

Chapter I-2 — Guided Tour of Igor Pro

27.

28.

29.
30.

31.

Tab to Y1 and type “1”.

The X coordinates of the rectangle are now measured in terms of the bottom axis and the left side
will be at zero while the right side will be at 1.6.

The Y coordinates are still measured relative to the plot area. Since we entered zero and one for
the Y coordinates, the rectangle will span the entire height of the plot area.

Click Do It.

Notice the rectangle is nicely aligned with the axis and the plot area.

Click the operate icon, , to exit drawing mode.

Press Option (Macintosh) or Alt (Windows), click in the middle of the plot area and drag about
2 cm to the right.

The axes are rescaled. Notice that the rectangle moved to align itself with the bottom axis.
Choose Edit—>Undo Scale Change.

Making a Window Recreation Macro

1.

Click the graph’s close button.

Igor presents a dialog which asks if you want to save a window recreation macro. The graph’s
name is “Graph0” so Igor suggests “Graph0” as the macro name.

Click Save.

Igor generates a window recreation macro in the currently hidden procedure window. A window
recreation macro contains the commands necessary to recreate a graph, table, or page layout. You
can invoke this macro to recreate the graph you just closed.

Choose the Windows—>Procedure Windows—>Procedure Window menu item.
The procedure window is always present but is usually hidden to keep it out of the way. The win-
dow now contains the recreation macro for Graph0. You may need to scroll up to see the start of

the macro. Because of the way it is declared, Window GraphO () : Graph, this macro will be
available from the Graph Macros submenu of the Windows main menu.

Click the procedure window’s close button.

This hides the procedure window. Most other windows will put up a dialog asking if you want
to kill or hide the window, but the built-in procedure window and the help windows simply hide
themselves.

Recreating the Graph

1.

Choose the Windows—>Graph Macros—>Graph0 menu item.
Igor executes the GraphO macro which recreates a graph of the same name.
Repeat step #1.

The GraphO macro is executed again but this time Igor gave the new graph a slightly different
name, GraphQ_1, because a graph named Graph0 already existed.

While pressing Option (Macintosh) or Alt (Windows) click the close button of Graph0_1.

The window is killed without presenting a dialog.

Saving Your Work

1.
2.
3.

Choose the File—>Save Experiment As menu item.
Navigate back to the folder where you saved the first time.
Change the name to “Tour #1 b.pxp” and click Save.

If you want to take a break, you can quit from Igor now.

I-27

Chapter I-2 — Guided Tour of Igor Pro

Using Igor Documentation

Now we will take a quick look at how find information about Igor.

In addition to guided tours such as this one, Igor includes context-sensitive help, general usage information
and reference information. The main guided tours as well as the general and reference information are
available in both the online help files and in the Igor Pro PDF manual.

We'll start with context-sensitive help.

1.

10.

I-28

On Macintosh only, turn Igor Tips on by choosing Help—>Show Igor Tips.
On Macintosh Igor tips for icons, menu items and dialog items appear in yellow textboxes.

On Windows tips for icons and menu items appear in the status line at the bottom of the Igor Pro
frame window.

Click the Data menu item and move the cursor over the items in the menu.
Notice the tips in yellow textboxes on Macintosh and in the status line on Windows.

You can also get textbox tips on Windows by pressing Shift-F1 and then clicking an icon or menu
item, but the status line is usually more convenient.

Choose Data—Load Waves—>Load Waves.

Igor displays the Load Waves dialog. This dialog provides an interface to the LoadWave opera-
tion which is how you load data into Igor from text data files.

On Macintosh only, move the cursor over the Load Columns Into Matrix checkbox.
An Igor tip appears in a yellow textbox. You can get a tip for most dialog items this way.

On Windows only, click the question-mark icon in the top-right corner of the dialog window
and then click the Load Columns Into Matrix checkbox.

Context-sensitive help appears in a yellow textbox. You can get a tip for most dialog items this
way.

Click the Cancel button to quit the dialog.

Now let's see how to get reference help for a particular operation.

Choose Help—Command Help.

The Igor Help Browser appears with the Command Help tab displayed.

The information displayed in this tab comes from the Igor Reference help file - one of many help
files that Igor automatically opens at launch. Open help files are directly accessible through Win-
dows—>Help Windows but we will use the Igor Help Browser right now.

Make sure all three checkboxes in the Command Help tab of the help browser are checked and
that all three pop-up menus are set to All.

These checkboxes and pop-up menus control which operations, functions and keywords appear
in the list.

Click any item in the list and then type "Loa".

Igor displays help for the LoadData operation. We want the LoadWave operation.
Press the down-arrow key a few times until LoadWave is selected in the list.
Igor displays help for the LoadWave operation in the Help windoid.

Another way to get reference help is to Ctrl-click (Macintosh) or right-click (Windows) the name
of an operation or function and choose the "Help For" menu item. This works in the command
window and in procedure, notebook and help windows.

While we're in the Igor Help Browser, let's see what the other tabs are for.

Chapter I-2 — Guided Tour of Igor Pro

11. Click each of the Help Browser tabs and note their contents.
You can explore these tabs in more detail later.

Next we will take a quick trip to the Igor Pro PDF manual. If you are doing this guided tour using
the PDF manual, you may want to just read the following steps rather than do them to avoid los-
ing your place.

12. Click the Manual tab and then click the Open Online Manual button.

Igor opens the PDF manual in your PDF viewer - typically Adobe Reader or Apple's Preview pro-
gram.

If you use Adobe Reader for viewing PDF files, you should have a Bookmarks pane on the left
side of the PDF manual window. If not, choose View—>Navigation Panel—->Bookmarks in
Reader.

If you use Apple's Preview for PDF files, you should have a drawer on one side of the main page.
If not, choose View—>Drawer in Preview.

Note in the Reader Bookmarks pane or the Preview drawer that the PDF manual is organized into
five volumes plus an index.

i lgorMan. pdf - Adobe Reader,
File Edit W“iew Document Tools Window Help

B & [1

|! Bookmarks *®
u ' |:::|F:Itil:lr|:5: -
Iu ‘Jﬁ Table of Contents

K] “alume | Getting Started

K| “alume Il User's Guide: Part 1
E| “alume Il User's Guide: Part 2
K] “alume v Frogramrming

K| walume ¥ Referance

Kl Index

13. Use the Bookmarks pane to get a sense of what's in the manual.
Expand the volume bookmarks to see the chapter names.

You may have noticed that the Igor PDF manual is rather large - about 2,000 pages at last count.
You'll be happy to know that we don't expect you to read it cover-to-cover. Instead, chapters as
the need arises.

The information in the manual is also in the online help files. The manual, being in book format,
is better organized for linear reading while the online help is usually preferred for accessing ref-
erence information.

In case you ever want to open it directly, you can find the PDF manual in "Igor Pro Folder/Man-
ual".

That should give you an idea of where to look for information about Igor. Now let's get back to our hands-
on exploration of Igor.

Graphically Editing Data

0. If you quit Igor after the last save, open your “Tour #1 b.pxp” experiment and turn off preferences.

I-29

Chapter I-2 — Guided Tour of Igor Pro

1.

10.

11.

12.

13.
14.

Adjust the positions of the graph and table so you can see both.
Make sure you can see the columns of data when the graph is the front window.
If necessary, click in the Graph0 window to bring it to the front.

Click the drawing mode icon, , to activate the drawing tools.

While pressing Option (Macintosh) or Alt (Windows) on the keyboard, move the cursor over
the polygon icon () and click and hold the mouse button.

A pop-up menu appears.

Choose the Edit—Edit Wave menu item.

Click one of the open circles of the yval trace.

The trace is redrawn using lines and squares to show the location of the data points.
Click the second square from the left and drag it 1 cm up and to the right.
Notice point 1 of yval and timeval changes in the table.

Press Command-Z (Macintosh) or Ctrl+Z (Windows) or choose Edit—Undo.
Click midway between the first and second point and drag up 1 cm.

Notice a new data point 1 of yval and timeval appears in the table.

Press Option (Macintosh) or Alt (Windows) and click the new data point with the tip of the
lightning bolt.

The new data point is zapped.
You could also have pressed Command-Z (Macintosh) or Ctrl+Z (Windows) to undo the insertion.

Press Command (Macintosh) or Ctrl (Windows), click the line segment between the second
and third point and drag a few cm to the right.

The line segment is moved and two points of yval and timeval are changed in the table.
Press Command-Z (Macintosh) or Ctrl+Z (Windows) or choose Edit—Undo.

Click in the operate icon, , to exit drawing mode.
Choose File—>Revert Experiment and answer Yes in the dialog.

This returns the experiment to the state it was in before we started editing the data.

Making a Category Plot (Optional)

Category plots show continuous numeric data plotted against non-numeric text categories.

I-30

1.
2.

Choose the Windows—>New Table menu item.
Click in the Do It button.

A new blank table is created. We could have used the existing table but it is best to keep unrelated
data separate.

Type “Monday” and then press Return or Enter.

A wave named “textWave(” was created with the text Monday as the value of the first point. Entering
a non-numeric value in the first row of the first blank column automatically creates a new text wave.
Type the following lines, pressing Enter after each one:

Tuesday
Wednesday
Thursday

Click in the first cell of the next column and enter the following values:

10
25
3

16

Chapter I-2 — Guided Tour of Igor Pro

10.

11.

12.

13.

Click in the first cell of the next column and enter the following values:

0

12
30
17

Choose Windows—>New—>Category Plot.

A dialog similar to the New Graph dialog appears. This dialog shows only text waves in the right-
hand list.

Click the From Target checkbox to select it.

This limits the list of waves to those in the target window. The target window is the table we just made.
In the Y Wave(s) list, select both items and select textWave0 in the X Wave list.

Click Do It.

A category plot is created.

Double-click one of the bars.

The Modify Trace Appearance dialog appears.

Using the “+Fill Type” pop-up menu, change the fills of each trace to any desired pattern.
You might also want to change the colors.

Click Do It.

Your graph should now look like this:

& OO GraphO:wavel,wavel vs textWave(
30—

25+

20—

Tuesday Wednesday Thuraday

Category Plot Options (Optional)

This section explores various category-plot options. If you are not particularly interested in category plots,
you can stop now, or at any point in the following steps, by closing the graph and table and skipping
forward to the next section.

Double-click one of the bars and, if necessary, select the top trace in the list.

From the Grouping pop-up menu, choose Stack on Next.

Click Do It.

The left bar in each group is now stacked on top of the right bar.

Choose the Graph—>Reorder Traces menu item.

Reverse the order of the items in the list by dragging the top item down. Click Do It.

The bars are no longer stacked and the bars that used to be on the left are now on the right. The
reason the bars are not stacked is that the trace that we set to Stack on Next mode is now last and
there is no next trace.

I-31

Chapter I-2 — Guided Tour of Igor Pro

I-32

6.

10.
11.

12.

13.

Again using the Modify Trace Appearance dialog, set the top trace to Stack on next. Click Do It.
The category plot graph should now look like this:

E.J GraphD:wavel ,wavel vz textWavel

honday ! Tuesday ! Wednesday ! Thursday

Enter the following values in the next blank column in the table:

7
10
15
9

This creates a new wave named wave2.

Click in the graph to bring it to the front.

Choose Graph—>Append to Graph—> Category Plot.
In the Y list, select wave2 and click Do It.

The new trace is appended after the previous two. Because the second trace was in Stack on Next
mode, the new trace is on the bottom of each set of three stacked bars.

Using the Modify Trace Appearance dialog, change the grouping mode of the middle trace to
none.

Now the new bars are to the right of a group of two stacked bars. You can create any combination
of stacked and side-by-side bars.

Double-click directly on the bottom axis.
The Modify Axis dialog appears with the bottom axis selected.
Click the Auto/Man Ticks tab.

Chapter I-2 — Guided Tour of Igor Pro

14. Select the Tick In Center checkbox and then click Do It.

Notice the new positions of the tick marks.

P GraphD:wavel wavel, wave? vs textWavel [=|o] =)
38 gigiiﬂ-
.
a0 - B
25 —
20—
15 — ~
N
N
NN N \
| N - \
A NN LN

honday Tuesday Wednesday Thursday

15. Again double-click directly on the bottom axis.

16. Click the Axis tab.

17. Change the value of Bar Gap to zero and then click Do It.
Notice that the bars within a group are now touching.

18. Use the Modify Axis dialog to set the Category Gap to 50%.
The widths of the bars shrink to 50% of the category width.

19. Choose Graph—>Modify Graph.

20. Select the “Swap X & Y Axes” checkbox and then click Do It.
This is how you create a horizontal bar plot.

21. Close both the graph and table windows without saving recreation macros.

The Command Window
Parts of this tour make use of Igor’s command line to enter mathematical formulae. Let’s get some practice now.

Your command window should look something like this:

NOe Tour #1b

sModifyGraph tick(bottom) =4
eodifyGraph barGapf bottomy=0
#ModifyGraph catGapl battom) =0.5
eMlodifyGraph swapay=1

The command line is the space below the separator whereas the space above the separator is called the
history area.

1. Click in the command line, type the following line and press Return or Enter.
Print 242
The Print command as well as the result are placed in the history area.

I-33

Chapter I-2 — Guided Tour of Igor Pro

I-34

2.

10.

11.
12.
13.

14.

15.

16.

17.

18.

19.
20.

21.

Press the Up Arrow key.

The line containing the print command is selected, skipping over the result printout line.
Press Return or Enter.

The selected line in the history is copied to the command line.

Edit the command line so it matches the following and press Return or Enter.

Print "The result is ", 242

The Print command takes a list of numeric or string expressions, evaluates them and prints the
results into the history.

Choose the Help—Igor Help Browser menu item.
The Igor Help Browser appears.

You can also display the help browser by pressing Help (Macintosh) or F1 (Windows), or by clicking
the question-mark icon near the right edge of the command window.

Click the Command Help tab in the Igor Help Browser.

Deselect the Functions and Programming checkboxes and select the Operations checkbox.
A list of operations appears.

In the pop-up menu next to the Operations checkbox, choose About Waves.

Select PlaySound in the list.

“"_ 17

Tip: Click in the list to activate it and then type “p” to jump to PlaySound.

Click the Help windoid, scroll down to the Examples section, and select the first four lines of
example text (starting with “Make”, ending with “PlaySound sineSound).

Choose the Edit—Copy menu to copy the selection.

Close the Igor Help Browser.

Choose Edit—>Paste.

All four lines are pasted into the command line area. You can view the lines using the miniature scroll
arrows that appear at the right-hand edge of the command line.

Press Return or Enter to execute the commands.

The four lines are executed and a short tone plays. (Windows: You may see an error message if
your computer is not set up for sound.)

Click once on the last line in the history area (PlaySound sineSound).
The entire line (less the bullet) is selected just as if you pressed the arrow key.

Press Return or Enter once to transfer the command to the command line and a second time to
execute it.

The tone plays again as the line executes.

We are finished with the “sineSound” wave that was created in this exercise so let’s kill the wave
to prevent it from cluttering up our wave lists.

Choose Data—Kill Waves.

The Kill Waves dialog appears.

Select “sineSound” and click Do It.

The sineSound wave is removed from memory.

Again click once on the history line “PlaySound sineSound”.

Press Return or Enter twice to re-execute the command.

An error dialog is presented because the sineSound wave no longer exists.
Click OK to close the error dialog.

Chapter I-2 — Guided Tour of Igor Pro

22,

Choose Edit—>Clear Command Buffer or press Command-K (Macintosh) or Ctrl+K (Windows).

When a command generates an error, it is left in the command line so you can edit and re-execute
it. In this case we just wanted to clear the command line.

Browsing Waves

1.

Choose the Data—>Browse Waves menu item.

The Browse Waves dialog appears. You can view the properties of the waves that are in memory
and available for use in the current experiment and can also examine waves that are stored in
individual binary files on disk.

Click “timeval” in the list.
The dialog shows the properties of the timeval wave.
Click in the Wave Note area of the dialog.

A wave note is text you can associate with a wave. You can both view and edit the text of the note.
The other fields in this dialog are read-only.

Type the following line:

This wave was created by typing data into a table.

Click the other waves in the list while observing their properties.
Click the done button to exit the dialog.

Using the Data Browser

The Data Browser provides another way to browse waves. You can also browse numeric and string variables.

1.

Choose the Data—>Data Browser menu item.

The Data Browser appears.

Make sure all of the checkboxes in the top-left corner of the Data Browser are checked.
Click on the timeval wave icon to select it.

Note that the wave is displayed in the plot pane at the bottom of the Data Browser and the wave’s
properties are displayed just above in the info pane.

Control-click (Macintosh) or right-click (Windows) on the timeval wave icon.

A contextual menu appears with a number of actions that you can perform on the selection.
Press Escape to dismiss the contextual menu.

You can explore that and other Data Browser features later on your own.

Click the Data Browser’s close box to close it.

Synthesizing Data

In this section we will make waves and fill them with data using arithmetic expressions.

1.

Choose the Data—>Make Waves menu item.

The Make Waves dialog appears.

Type “spiralY”, Tab, and then “spiralX” in the second box.
Change Rows to 1000.

Click Do It.

Two 1000 point waves have been created. They are now part of the experiment but are not visible
because we haven’t put them in a table or graph.

Choose Data—Change Wave Scaling.
If a button labeled More Options is showing, click it.

I-35

Chapter I-2 — Guided Tour of Igor Pro

7.

10.

11.
12.

13.

In the Wave(s) list, click spiralY and then Command-click (Macintosh) or Ctrl-click (Windows) spi-
ralX.

Choose Start and Right for the SetScale Mode pop-up menu.
Enter “0” for Start and “50” for Right.
Click Do It.

This executes a SetScale command specifying the X scaling of the spiralX and spiralY waves. X
scaling is a property of a wave that maps a point number to an X value. In this case we are map-
ping point numbers 0 through 999 to X values 0 through 50.

If necessary, click in the command window to bring it to the front.
Type the following on the command line and then press Return or Enter:
spiralY= x*sin (x)

This is a waveform assignment statement. It assigns a value to each point of the destination wave (spi-
ralY). The value stored for a given point is the value of the righthand expression at that point. The
meaning of x in a waveform assignment statement is determined by the X scaling of the destination
wave. In this case, x takes on values from 0 to 50 as Igor evaluates the righthand expression for points
0 through 999.

Execute this in the command line:
spiralX= x*cos (x)

Now both spiralX and spiralY have their data values set.

Zooming and Panning

I-36

1.

A

Choose the Windows—>New Graph menu item.
If necessary, uncheck the From Target checkbox.
In the Y Wave(s) list, select “spiralY”.

In the X Wave list, select “_calculated_”.

Click Do It.

Note that the X axis goes from 0 to 50. This is because the SetScale command we executed earlier
set the X scaling property of spiralY which tells Igor how to compute an X value from a point num-
ber. Choosing _calculated_ from the X Wave list graphs the spiralY data values versus these cal-
culated X values.

Position the cursor in the interior of the graph.

The cursor changes to a cross-hair shape.

Chapter I-2 — Guided Tour of Igor Pro

7.

10.
11.
12.

13.
14.

15.

16.

Click and drag down and to the right to create a marquee as shown:

8eane Graphl:spiral¥

40 -

I I I I I 1
0 10 0 30 40 a0
o

You can resize the marquee with the black squares (handles). You can move the marquee by
dragging the dashed edge of the marquee.

Position the cursor inside the marquee.

The mouse pointer changes to this shape: =, indicating that a pop-up menu is available.

Click and choose Expand from the pop-up menu.

The axes are rescaled so that the area enclosed by the marquee fills the graph.

Choose Edit—>Undo Scale Change or press Command-Z (Macintosh) or Ctrl+Z (Windows).
Choose Edit—>Redo Scale Change or press Command-Z (Macintosh) or Ctrl+Z (Windows).
Press Option (Macintosh) or Alt (Windows) and position the cursor in the middle of the graph.

The cursor changes to a hand shape. You may need to move the cursor slightly before it changes
shape.

With the hand cursor showing, drag about 2 cm to the left.

While pressing Option (Macintosh) or Alt (Windows), click the middle of the graph and gently
fling it to the right.

The graph continues to pan until you click again to stop it.

Choose Graph—>Autoscale Axes or press Command-A (Macintosh) or Ctrl+A (Windows).
Continue experimenting with zooming and panning as desired.

Press Command-Option-W (Macintosh) or Ctrl+Alt+W (Windows).

The graph is killed. Option (Macintosh) or Alt (Windows) avoided the normal dialog asking
whether to save the graph.

Making a Graph with Multiple Axes

1.
2.

Choose the Windows—>New Graph menu item.

If you see a button labeled More Choices, click it.

We will use the more complex form of the dialog to create a multiple-axis graph in one step.
In the Y Wave(s) list, select “spiralY”.

In the X Wave list, select “spiralX”.

Click Add.

The selections are inserted into the lower list in the center of the dialog.

In the Y Wave(s) list, again select “spiralY”.

I-37

Chapter I-2 — Guided Tour of Igor Pro

I-38

10.

11.

12.

13.
14.

In the X Wave list, select “_calculated_”.

Choose New from the Axis pop-up menu under the X Wave(s) list.
Enter “B2” in the name box.

Click OK.

Note the command box at the bottom of the dialog. It contains two commands: a Display com-
mand corresponding to the initial selections that you added to the lower list and an AppendTo-
Graph command corresponding to the current selections in the Y Wave(s) and X Wave lists.

Click Do It.
The following graph is created.

eae Craphl:spiralY vs spiralX....

40 -

-40 -z0 0 20 40

The interior axis is called a “free” axis because it can be moved relative to the plot rectangle. We will
be moving it outside of the plot area but first we must make room by adjusting the plot area margins.

Press Option (Macintosh) or Alt (Windows) and position the cursor over the bottom axis until
the cursor changes to this shape: =f=.

This shape indicates you are over an edge of the plot area rectangle and that you can drag that
edge to adjust the margin.

Drag the margin up about 2 cm. Release the Option (Macintosh) or Alt (Windows).

Drag the interior axis down into the margin space you just created.

Chapter I-2 — Guided Tour of Igor Pro

15.

Resize the graph so the spiral is nearly circular.

Your graph should now look like this:

M O & Craphl:spiralY vs spiralX;...

Saving Your Work

1.
2.

Choose the File—>Save Experiment As menu item.
Type “Tour #1 c.pxp” in the name box and click Save.

If you want to take a break, you can quit from Igor now.

Using Cursors

0.
1.

If you are returning from a break, open your “Tour #1 c.pxp” experiment and turn off preferences.
Click in the graph and choose the Graph—>Show Info menu item.

A cursor info panel appears below the graph.

Turn on Igor Tips (Macintosh) or use context-sensitive help (Windows) to examine the info panel.

On Macintosh, choose Help—>Show Igor Tips and let the cursor hover over an item in the info
panel. When you have seen all the help, turn Igor Tips off.

On Windows, press Shift+F1 to get the &2 cursor and click an item in the info panel. You can see
similar help information in the status bar at the bottom of the Igor Pro frame window as you let
the cursor hover over an item in the info panel

Control-click (Macintosh) or right-click (Windows) in the name area for graph cursor A (the
round one).

Choose “spiralY” from the pop-up menu.
The A cursor is placed on point zero of spiralY.
Repeat for cursor B but choose “spiralY#1” from the pop-up menu.

The wave spiralY is graphed twice. The #1 suffix is used to distinguish the second instance from the
first. It is #1 rather than #2 because in Igor, indices start from zero.

Position the mouse pointer over the center of the slide control bar [T].

I-39

Chapter I-2 — Guided Tour of Igor Pro

7.

10.

11.

12.

13.
14.

15.

Gently drag the slide bar to the right.

Both cursors move to increasing point numbers. They stop when one or both get to the end.
Practice moving the slide bar to the left and right.

Notice that the cursors move with increasing speed as the bar is displaced farther from the center.
Click once on the dock for cursor A (the round black circle).

The circle turns white.

Move the slide bar to the left and right.

Notice that only cursor B moves.

Click cursor B in the graph and drag it to another position on either trace.

You can also drag cursors from their docks to the graph.

Click cursor A in the graph and drag it completely outside the graph.

The cursor is removed from the graph and returns to its dock.

Choose Graph—Hide Info.

Click in the command window, type the following and press Return or Enter.

Print vcsr (B)

The Y value at cursor B is printed into the history area. There are many functions available for
obtaining information about cursors.

Click in the graph and then drag cursor B off of the graph.

Removing a Trace and Axis

1.

Choose the Graph—>Remove from Graph menu item.

The Remove From Graph dialog appears with spiralY listed twice. When we created the graph
we used spiralY twice, first versus spiralX to create the spiral and second versus calculated X val-
ues to show the sine wave.

Click the second instance of spiralY (spiralY#1) and click Do It.

The sine wave and the bottom-most (free) axis are removed. An axis is removed when its last
trace is removed.

Drag the horizontal axis off the bottom of the window.

This returns the margin setting to auto. We had set it to a fixed position when we option-dragged
(Macintosh) or Alt-dragged (Windows) the margin in a previous step.

Creating a Graph with Stacked Axes

I-40

P N A L

o
e

Choose the Windows—>New Graph menu item.

If you see a button labeled More Choices, click it.

In the Y Wave(s) list, select “spiralY”.

In the X Wave list, select “_calculated_”.

Click Add.

In the Y Wave(s) list, select “spiralX”.

In the X Wave list, select “_calculated_”.

Choose New from the Axis pop-up menu under the Y Wave(s) list.
Enter “L2” in the name box.

Click OK.

Chapter I-2 — Guided Tour of Igor Pro

11.

12.

13.

14.
15.
16.
17.

18.

19.
20.
21.
22,

Click Do It.
The following graph is created.

a0 Craph2:spiralY;spiralX

an- 40
20 20 -
0t Y
20+ 70+
=40 — - 40 4

T T T T T |

] 10 20 a0 40 50

i

In the following steps we will stack the interior axis on top of the left axis.
Double-click the far left axis.

The Modify Axis dialog appears. If any other dialog appears, cancel and try again making sure
the cursor is over the axis.

Click the Axis tab.

The Left axis should already be selected in the pop-up menu in the upper-left corner.
Set the Left axis to draw between 0 and 45% of normal.

Choose L2 from the Axis pop-up menu.

Set the L2 axis to draw between 55 and 100% of normal.

In the Free Axis Position box, pop up the menu reading Distance from Margin and select Frac-
tion of Plot Area.

Verify that the box labeled “% of Plot Area” is set to zero.
Steps 17 and 18 move the L2 axis so it is in line with the Left axis.

Why don’t we make this the default? Good question — positioning as percent of plot area was
added in Igor Pro 6; the default maintains backward compatibility.

Choose Bottom from the Axis pop-up menu.
Click the Axis Standoff checkbox to turn standoff off.
Click Do It.

Resize and reposition the top two graph windows so they are side-by-side and roughly square.

I-41

Chapter I-2 — Guided Tour of Igor Pro

23. The graphs should look like this:

& O Craphl:spiralY vs spiralX eae Craph2:spiralY;spiralX
40 - 40
20—
0 —
20—
-20—
— A0 -
0 —
El
-7 - 20—
0 —
-20—
- 40
— A0 -
| | T | | | | | |
- 40 -Z0 a 20 0 10 20 30 40 a0
P
Appending to a Layout
1. Choose the Windows—>Layouts—>Layout0 menu item.
2. Adjust the layout window size and scrolling so you can see the blank area below the graph

that is already in the layout.
3. Click in the graph icon, H____J, and choose “Graph1”.
Graphl is added to the layout.
4. Again, click in the graph icon and choose “Graph2”.
Graph?2 is added to the layout.
Click the marquee icon | {7} .
Drag out a marquee that fills the printable space under the original graph.
7. Choose Layout—>Arrange Objects.
The Arrange Objects dialog appears.
Select both Graphl and Graph2. Leave the Use Marquee checkbox checked.
Click Do It.
The two graphs are tiled inside the area defined by the marquee.
10. Click in the page area outside the marquee to dismiss it.
11. Choose Windows—>Control—>Send Behind or press Command-E (Macintosh) or Ctrl+E (Windows).

Saving Your Work
1. Choose the File—>Save Experiment As menu item.
2. Type “Tour #1 d.pxp” in the name box and click Save.

If you want to take a break, you can quit Igor Pro now.

I-42

Chapter I-2 — Guided Tour of Igor Pro

Creating Controls

This section illustrates adding controls to an Igor graph — the type of thing a programmer might want to
do. If you are not interested in programming, you can s the End of the General Tour on page 1-46.

0.
1.
2.

10.

11.

12.

13.
14.

15.

16.
17.

18.
19.

If you are returning from a break, open your “Tour #1 d.pxp” experiment and turn off preferences.
Click in the graph with the spiral (Graph1) to bring it to the front.
Choose the Graph—>Show Tools menu item or press Command-T (Macintosh) or Ctrl+T (Windows).

A toolbar is displayed to the left of the graph. The second icon is selected indicating that the
graph is in the drawing as opposed to normal mode.

The selector tool (arrow) is active. It is used to create, select, move and resize controls.
Choose Graph—>Add Controls—>Control Bar.

The Control Bar dialog appears.

Enter a height of 30 pixels and click Do It.

This reserves a space at the top of the graph for controls.

Click in the command line, type the following and press Return or Enter.
Variable ymult=1, xmult=1

This creates two numeric variables and sets both to 1.0.

Click in the graph and then choose Graph—>Add Controls—>Add Set Variable.

The SetVariable Control dialog appears.

A SetVariable control provides a way to display and change the value of a variable.
Choose ymult from the Value pop-up menu.

Enter 80 in the Width edit box.

This setting is back near the top of the scrolling list.

Set the High Limit, Low Limit, and Increment values to 10, 0.1, and 0.1 respectively.
You may need to scroll down to find these settings.

Click Do It.

A SetVariable control attached to the variable ymult appears in the upper-left of the control bar.
Double-click the ymult control.

The SetVariable Control dialog appears.

Click the Duplicate button (it's at the bottom center of the dialog).

Choose xmult as the value.

Click Do It.

A second SetVariable control appears in the control bar. This one is attached to the xMult vari-
able.

Choose Graph—>Add Controls—>Add Button.

The Button Control dialog appears.

Enter “Update” in the Title box.

Click the New button adjacent to Procedure.

The Control Procedure dialog appears.

Make sure the “Prefer structure-based procedures” checkbox is not selected.
Edit the procedure text so it looks like this:

Function ButtonProc (ctrlName) : ButtonControl
String ctrlName

Wave spiralY, spiralX
NVAR ymult, xmult

I-43

Chapter I-2 — Guided Tour of Igor Pro

20.

21.

22.

23.
24.
25.

26.

27.
28.

spiralY= x*sin (ymult*x)
spiralX= x*cos (xmult*x)
End

Click the Save Procedure Now button.

The Control Procedure dialog disappears and the text you were editing is inserted into the (cur-
rently hidden) procedure window.

Click Do It.
A Button control is added to the control bar.

The three controls are now functional but are not esthetically arranged.

{% Graph1:spiralY vs spiralX E]@
ot [T [=t [S Update |

M

40 T
T //f—-ﬁ«\
=il 2-/// ““i\\\\
9, | / P \'.
g -{{(((@))))
| I ANy
% \ - h_”f”/”’/

-40 — x___d__,a—f'xp_,f”

Use the Arrow tool to rearrange the three controls into a more pleasing arrangement. Expand the
button so it doesn’t crowd the text by dragging its handles.

Click the top icon in the tool palette to enter “operate mode”.

Choose Graph—Hide Tools or press Command-T (Macintosh) or Ctrl+T (Windows).
Click the up arrow in the ymult control.

The value changes to 1.1.

Click the Update button.

The ButtonProc procedure that you created executes. The spiralY and spiralX waves are recalcu-
lated according to the expressions you entered in the procedure and the graphs are updated.

Experiment with different ymult and xmult settings as desired.
Set both values back to 1 and click the Update button.

You can use Tab to select a value and then simply type “1” followed by Return or Enter.

Creating a Dependency

A dependency is a rule that relates the value of an Igor wave or variable to the values of other waves or
variables. By setting up a dependency you can cause Igor to automatically update a wave when another
wave or variable changes.

1.
2.

I-44

Click in the command window to bring it to the front.

Execute the following commands in the command line:

Chapter I-2 — Guided Tour of Igor Pro

10.

11.
12.

13.
14.

x*sin (ymult*x)
xXx*cos (xmult*x)

spiralyY :
spiralX :

This is exactly what you entered before except here : = is used in place of =. The := operator cre-
ates a dependency formula. In the first expression, the wave spiralY is made dependent on the
variable ymult. If a new value is stored in ymult then the values in spiralY are automatically
recalculated from the expression.

Click in the graph with the spiral (Graph1) to bring it to the front.
Adjust the ymult and xmult controls but do not click the Update button.

When you change the value of ymult or xmult using the SetVariable control, Igor automatically
executes the dependency formula. The spiralY or spiralX waves are recalculated and both graphs
are updated.

On the command line, execute this:

ymult := 3*xmult

Note that the ymult SetVariable control as well as the graphs are updated.
Adjust the xmult value.

Again notice that ymult as well as the graphs are updated.

Choose the Misc— Object Status menu item.

The Object Status dialog appears. You can use this dialog to examine Igor objects that might oth-
erwise have no visual representation such as string and numeric variables.

Click the “The Current Object” pop-up menu and choose spiralY from the Dependent Objects
item (Macintosh) or drop-down list (Windows).

The list on the right indicates that spiralY depends on the variable ymult.

Double-click the ymult entry in the right hand list.

ymult becomes the current object. The list on the right now indicates that ymult depends on xmult.
Click the Delete Formula button.

Now ymult no longer depends on xmult.

Click Done.

Adjust the xmult setting,.

The ymult value is no longer automatically recalculated but the spiralY and spiralX waves still are.
Click the Update button.

Adjust the xmult and ymult settings.

The spiralY and spiralX waves are no longer automatically recalculated. This is because the But-
tonProc function called by the Update button does a normal assignment using = rather than : =
and that action removes the dependency formulae.

Note: Inreal work, you should avoid the kind of multilevel dependencies that we created here
because they are too confusing.

In fact, it is best to avoid dependencies altogether as they are hard to keep track of and
debug. If a button action procedure or menu item procedure can do the job then use the
procedure rather than the dependency.

Saving Your Work

1.
2.

Choose the File— Save Experiment As menu item.

Type “Tour #1 e.pxp” in the name box and click Save.

I-45

Chapter I-2 — Guided Tour of Igor Pro

End of the General Tour
This is the end of the general tour of Igor Pro.

If you want to take a break, you can quit from Igor Pro now.

I-46

Chapter I-2 — Guided Tour of Igor Pro

Guided Tour 2 - Data Analysis

In this tour we will concentrate on the data analysis features of Igor Pro. We will generate synthetic data
and then manipulate it using sorting and curve fitting.

Launching Igor Pro
1. Double-click the Igor Pro application file on your hard disk.
If Igor was already running, choose New Experiment from the File menu.

2. Use the Misc menu to turn preferences off.

Creating Synthetic Data

We need something to analyze, so we generate some random X values and create some Y data using a math
function.

1. Type the following in the command line and then press Return or Enter:

SetRandomSeed 0.1

This initializes the random number generator so you will get the same results as this guided tour.
2. Type the following in the command line and then press Return or Enter:

Make/N=100 fakeX=enoise (5)+5, fakeY

This generates two 100 point waves and fills fakeX with evenly distributed random values rang-
ing from 0 to 10.

3. Execute this in the same way:

fakeY = exp (- (fakeX-4)"2)+gnoise(0.1)
This generates a Gaussian peak centered at 4.
Choose the Windows— New Graph menu item.
In the Y Wave(s) list, select “fakeY”.

In the X Wave list, select “fakeX”.

Click Do It.

The graph is a rat’s nest of lines because the X values are not sorted.

NS 9o

8. Double-click in the center of the graph.
The Modify Trace Appearance dialog appears.
9. From the Mode pop-up choose Markers.

10. From the pop-up menu of markers choose the open circle.

I-47

Chapter I-2 — Guided Tour of Igor Pro

11.

Click Do It.

Now the graph makes sense.

027 @0 OC%O %O@Oo B o
o

Quick Curve Fit to a Gaussian

Our synthetic data was generated using a Gaussian function so let’s try to extract the original parameters
by fitting to a Gaussian of the form:

Yy

yv0 + A*exp (- ((x-x0)/width)"2)

Here y0, A, X0 and width are the parameters of the fit.

1.

I-48

Choose the Analysis—>Quick Fit—>gauss menu item.

Igor generated and executed a CurveFit command which you can see if you scroll up a bit in the
history area of the command window. The CurveFit command performed the fit, appended a fit
result trace to the graph, and reported results in the history area.

At the bottom of the reported results we see the values found for the fit parameters. The ampli-
tude parameter (A) should be 1.0 and the position parameter (x0) should be 4.0. We got 0.99222
+0.0299 for the amplitude and 3.9997 + 0.023 for the position.

Let’s add this information to the graph.
Choose Analysis—>Quick Fit—>Textbox Preferences.
The Curve Fit Textbox Preferences dialog appears.

You can add a textbox containing curve fit results to your graph. The Curve Fit Textbox Prefer-
ence dialog has a checkbox for each component of information that can be included in the textbox.

Click the Display Curve Fit Info Textbox to select it and then click OK.
You have specified that you want an info textbox. This will affect future Quick Fit operations.
Choose Analysis—>Quick Fit—>gauss again.

This time, Igor displays a textbox with the curve fit results. Once the textbox is made, it is just a
textbox and you can double-click it and change it. But if you redo the fit, your changes will be lost
unless you rename the textbox.

That textbox is nice, but it’s too big. Let’s get rid of it.

Choose Analysis—Quick Fit—>Textbox Preferences again. Click the Display Curve Fit Info
Textbox to deselect it. Click OK.

Chapter I-2 — Guided Tour of Igor Pro

Choose Analysis—>Quick Fit—>gauss again.
The textbox is removed from the graph.

You could just double-click the textbox and click Delete in the Modify Annotation dialog. The next
time you do a Quick Fit you would still get the textbox unless you turn the textbox feature off.

More Curve Fitting to a Gaussian

The Quick Fit menu provides easy access to curve fitting using the built-in fit functions, with a limited set of
options, to fit data displayed in a graph. You may want more options. For that you use the Curve Fitting dialog.

1. Choose the Analysis—>Curve Fitting menu item.
The curve fitting dialog appears.
2. Click the Function and Data tab.
3. From the Function pop-up menu, choose gauss.
4. From the Y Data pop-up menu, choose fakeY.
5. From the X Data pop-up menu, choose fakeX.
6. Click the Data Options tab.
The Weighting and Data Mask pop-up menus should read “_none_".
7. Click the Output Options tab.
The Destination pop-up menu should read “_auto_” and Residual should read “_none_".
8. Click Do It.
During the fit a Curve Fit progress window appears. After a few passes the fit is finished and Igor
waits for you to click OK in the progress window.
9. Click OK.
The curve fit results are printed in the history. They are the same as in the previous section.
Sorting
In the next section we will do a curve fit to a subrange of the data. For this to work, the data must be sorted
by X values.
1. Double-click one of the open circle markers in the graph.
The Modify Traces Appearance dialog appears with fakeY selected. If fakeY is not selected, click it.
2. From the Mode pop-up choose Lines between points and click Do It.
The fakeY trace reverts to a rat’s nest of lines.
3. Choose the Analysis—>Sort menu item.
The Sorting dialog appears.
If necessary choose Sort from the Operation pop-up menu.
Select “fakeX” in the “Key Wave” list and both “fakeX” and “fakeY” in the “Waves to Sort” list.
This will sort both fakeX and fakeY using fakeX as the sort key.
6. Click Do It.
The rat’s nest is untangled. Since we were using the lines between points mode just to show the results
of the sort, we now switch back to open circles but in a new way.
7. Press Control and click (Macintosh) or right-click (Windows) on the fakeY trace.
A pop-up menu appears with the name of the trace at the top. If it is not “Browse fakeY” try again.
8. Choose Markers from the Mode item.

I-49

Chapter I-2 — Guided Tour of Igor Pro

Fitting to a Subrange

Here we will again fit our data to a Gaussian but using a subset of the data. We will then extrapolate the fit
outside of the initial range.

1.

6.

I-50

Choose the Graph—>Show Info menu item.

A cursor info panel is appended to the bottom of the graph.

Two cursors are "docked" in the info panel, Cursor A and Cursor B.
Place cursor A (the round one) on the fakeY trace.

One way to place the cursor is to drag it to the trace. Another way is to control-click (Macintosh)
or right-click (Windows) on the name area which is just to the right of the cursor icon in the cursor
info panel.

Note that the cursor A icon in the dock is now black. This indicates that cursor A is selected,
meaning that it will move if you use the arrow keys on the keyboard or the slider in the cursor
info panel.

Move cursor A to point #14.

To move the cursor one point at a time, use the arrow keys on the keyboard or click on either side
of the slider in the cursor info panel.

Click the dock for cursor A in the cursor info panel to deselect it.
This is so you can adjust cursor B without affecting the position of cursor A.
Place cursor B (the square one) on the fakeY trace and move it to point #42.

Your graph should look like this:
8a0e Graph(:fakeY vs fakeX:...

1.2 ©
1.0
0.8
0.6 -
0.4
0.2 -

0.0+

-0.2

A fake' [T Pt H:1.7711 1010468 ¥ 2. 7651

B: fake' prt: 42 H: 45362 ¥ 071067 &Y : 060599
In the Analysis—>Quick Fit menu make sure the Fit Between Cursors item is checked. If it is
not, select it to check it.

Chapter I-2 — Guided Tour of Igor Pro

10.

11.

12.

13.

14.

Choose Analysis—>Quick Fit—>gauss.

Note that the fit curve is evaluated only over the subrange identified by the cursors.

®06 GraphO:fakeY vs fakeX;...

1.2 =
1.0
0.8 -
0.6 -
0.4
0.2 - . e o .
0.0 - o
o] o]
P, 0, ¥
-0.2 o
I I I I I]
] 2 4 £ & 10
A
A faket I:I:l prt: 14 #1771 Yo0.104568 AKX 27651
B fake' prt: 42 Hod 0362 YoOTFI067T At 0.E0599

We would like the fit trace to extend over the entire X range, while fitting only to the data
between the cursors. This is one of the options available only in the Curve Fitting dialog.

Choose Analysis—>Curve Fitting and then click the Function and Data tab.

The curve fitting dialog appears and the settings should be as you left them. Check that the func-
tion type is gauss, the X data is fakeY, the X data is fakeX.

Click the Data Options tab.

Click the Cursors button in the Range area.

This puts the text “pcsr(A)” and “pesr(B)” in the range entry boxes.

pesr is a function that returns the wave point number at the cursor position.

Select the Output Options tab and click the X Range Full Width of Graph checkbox to select it.
Click Do It.

The curve fit starts, does a few passes and waits for you to click OK.

Click OK.

The fit has been done using only the data between the cursors, but the fit trace extends over the
entire X range.

In the next section, we need the short version of the fit curve, so we will simply do the fit again:

Choose Analysis—>Quick Fit—>gauss.

Extrapolating a Fit After the Fit is Done

When you used the Quick Fit menu, and when you chose “_auto_” from the Destination pop-up menu in the
curve fit dialog, Igor created a wave named fit_fakeY to show the fit results. This is called the "fit destination
wave." It is just an ordinary wave whose X scaling is set to the extent of the X values used in the fit.

In the preceding sections you learned how to make the curve fit operation extrapolate the fit curve beyond
the subrange. Here we show you how to do this manually to illustrate some important wave concepts.

To extrapolate, we simply change the X scaling of fit_fakeY and re-execute the fit destination wave assign-
ment statement which the CurveFit operation put in the history area.

1.
2.

Choose the Data—Change Wave Scaling menu item.
If you see a button labeled More Options, click it.

I-51

Chapter I-2 — Guided Tour of Igor Pro

From the SetScale Mode pop-up menu, choose Start and End.
Double-click “fit_fakeY” in the list.

This reads in the current X scaling values of fit_fakeY. The starting X value will be about 1.77 and
the ending X will be about 4.53.

Press Tab until the Start box is selected and enter 1.0.

Tab to the End box and type “8.0”.

Click Do It

The fit_fakeY trace is stretched out and now runs between 1 and 8.

Now we need to calculate new Y values for fit_fakeY using its new X values.
In the history, find the line that starts “fit_fakeY=" and click it.

The entire line is selected. (The line in question is near the top of the curve fit report printed in
the history.)

Press Return or Enter once to copy the selection from the history to the command line and a
second time to execute it.

The fit_fakeY wave now contains valid data between 1 and 8.

®00 Craph(:fakeY vs fakeX:...

1.2 4

1.0

0.8+

0.6+

0.4+

0.2 —

0.0+

-0.2

b fake' I:I:l 53‘ pnt: 14 A 1.FT1 ¥ 010465 AR 27651
E: fake'Y pnt: 42 AL 40362 ¥ 0TF1067 A% 0.E0599

Appending a Fit

The fit trace added automatically when Igor does a curve fit uses a wave named by adding “fit_" to the start
of the Y data wave’s name. If you do another fit to the same Y data, that fit curve will be overwritten. If you
want to show the results of several fits to the same data, you will have to somehow protect the fit destination
wave from being overwritten. This is done by simply renaming it.

1.

2
3.
4

I-52

Choose the Data—Rename menu item.

Double-click the wave named fit_fakeY to move it into the list on the right.

Edit the name in the New Name box to change the name to “gaussFit_fakeY” and click Do It.
Position the A and B cursors to point numbers 35 and 65, respectively.

Tip: Click in the dock for a given cursor to enable/disable its being moved by the slide control
and arrow keys. Click to either side of the central slide or use the arrow keys to move the
cursor one point number at a time.

Chapter I-2 — Guided Tour of Igor Pro

5. Choose Analysis—>Quick Fit—line.

Because there are two traces on the graph, Quick Fit doesn’t know which one to fit and puts up
the Which Trace to Fit dialog.

6. Select fakeY from the menu and click OK.

The curve fit is performed without displaying the fit progress window because the line fit is not
iterative.

eoOe GraphO:fakeY vs fakeX;...

1.2 ©
1.0
0.8
0.6 -
0.4
0.2 -

0.0+

-0.2

& fake' I:I:l pnt: 25 ERER-TY| Y 093ETT A¥: 13283
B: fake' pnt: &1 w5764 Yo -0.0201829 At -0.95696

This concludes Guided Tour 2.

I-53

Chapter I-2 — Guided Tour of Igor Pro

Guided Tour 3 - Histograms and Curve Fitting

In this tour we will explore the Histogram operation and will perform a curve fit using weighting. The
optional last portion creates a residuals plot and shows you how to create a useful procedure from com-
mands in the history.

Launching Igor Pro
1. Double-click the Igor Pro application file on your hard disk.
If Igor was already running, choose New Experiment from the File menu.

2. Use the Misc menu to turn preferences off.

Creating Synthetic Data
We need something to analyze, so let’s generate some random values.
1. Type the following in the command line and then press Return or Enter:
SetRandomSeed 0.1
This initializes the random number generator so you will get the same results as this guided tour.
2. Type the following in the command line and then press Return or Enter:
Make/N=10000 fakeY= enoise (1)
This generates a 10,000 point wave filled with evenly distributed random values from -1 to 1.

Histogram of White Noise

Here we will generate a histogram of the evenly distributed “white” noise.
1. Choose the Analysis—>Histogram menu item.

The Histogram dialog appears.

Select fakeY from the Source Wave list.

Verify that Auto is selected in the Output Wave menu.

Select the Auto-set bin range radio button.

Set the Number of Bins box to 100.

Note in the command box at the bottom of the dialog there are two commands:

AR

Make/N=100/0 fakeY Hist;DelayUpdate
Histogram/B=1 fakeY, fakeY Hist

The first command makes a wave to receive the results, the second performs the analysis. The
Histogram operation in the “Auto-set bin range” mode takes the number of bins from the output
wave.

6. Click the Do It button.

The histogram operation is performed.

Now we need to display the results.

Choose Windows—>New Graph.

Select fakeY_Hist in the Y Wave(s) list and “_calculated_” in the X list.

Click the Do It button.

A graph is created showing the histogram results. We need to touch it up a bit.
10. Double-click the trace in the graph.

The Modify Trace Appearance dialog appears.

"Left" is selected in the Axis pop-up menu in the top/left corner of the dialog indicating that
changes made in the dialog will affect the left axis.

I-54

Chapter I-2 — Guided Tour of Igor Pro

11.

12.

13.

14.
15.

16.

Choose “Sticks to zero” from the Mode pop-up menu and click Do It.
The graph is redrawn using the new display mode.

Double-click one of the tick mark labels (e.g., “100) of the left axis.
The Modify Axis dialog appears, showing the Axis Range tab.

From the two pop-up menus in the Autoscale Settings area, choose “Round to nice values” and
“Autoscale from zero”.

Choose Bottom from the Axis pop-up menu.

From the two pop-up menus in the Autoscale Settings area, choose “Round to nice values” and
“Symmetric about zero”.

Click the Do It button.
Your graph should now look like this:

140 —

120 —
100 —
80 —
B0 —
40 —

20 —

-1.0 0.4 0.0 0.5 1.0

Histogram of Gaussian Noise

Now we'll do another histogram, this time with Gaussian noise.

1.

Type the following in the command line and then press Return or Enter:
fakeY = gnoise (1)

Choose the Analysis—>Histogram menu item.

The dialog should still be correctly set up from the last time.

Click the radio button labeled “Auto-set bins: 3.49*Sdev*N”-1/3".

The information text at the bottom of the Destination Bins box tells you that he histogram will
have 48 bins.

This is a method by Sturges for selecting a “good” number of bins for a histogram. See the His-
togram operation on page V-233 for a reference.

Select the Bin-Centered X Values checkbox.

By default, the Histogram operation sets the X scaling of the output wave such that the X values are
at the left edge of each bin, and the right edge is given by the next X value. This makes a nice bar plot.

In the next section you will do a curve fit to the histogram. For curve fitting you need X values
that represent the center of each bin.

I-55

Chapter I-2 — Guided Tour of Igor Pro

5.

10.

11.
12.

13.

Select the Create Square Root(N) Wave checkbox.

Counting data, such as a histogram, usually has Poisson-distributed values. The estimated mean
of the Poisson distribution is simply the number of counts (N) and the estimated standard devi-
ation is the square root of N.

The curve fit will be biased if this is not taken into account. You will use this extra wave for
weighting when you do the curve fit.

Click the Do It button.

Note that the histogram output as shown in GraphO has a Gaussian shape, as you would expect
since the histogram input was noise with a Gaussian distribution.

Choose Data—>Data Browser.

The Data Browser shows you the waves and variables in your experiment. You should see three
waves now: fakeY, fakeY_Hist, and W_SqrtN. FakeY_Hist contains the output of the Histogram
operation and W_SqrtN is the wave created by the Histogram operation to receive the square root
of N data.

Click in Graph0 and then double-click the trace to bring up the Modify Trace Appearance dia-
log.

Select Markers from the Mode menu, then select the open circle marker.
Click the Error bars checkbox.

The Error Bars dialog appears.

Select “+/- wave” from the Y Error Bars menu.

Pop up the Y+ menu and select W_SqrtN.

Note that W_SqrtN is also selected in the Y- menu. You could now select another wave from the
Y- menu if you needed asymmetric error bars.

Click OK, then Do It.

Curve Fit of Histogram Data

The previous section produces all the pieces required to fit a Gaussian to the histogram data, with proper
weighting to account for the variance of Poisson-distributed data.

1.
2.

I-56

Click in the graph to make sure it is the target window.

In the Analysis—>Quick Fit menu make sure the Weight from Error Bar Wave item is checked.
If it is not, select it to check it.

Choose Analysis—>Quick Fit—>gauss.
With all the changes you've made, by now the graph looks like this:

80e Graph0:fakeY _Hist,fit_fakeY_Hist
700 5
600 -
500
400
300
200
100

As shown in the history area, the fit results are:

Chapter I-2 — Guided Tour of Igor Pro

© ® 3w

11.

12.
13.

14.

Coefficient values + one standard deviation

y0 =-0.35284 * 0.513
A =644.85 £ 7.99
x0 =-0.0014111 + 0.00997

width=1.406 + 0.0118

The original data was made with a standard deviation of 1. Why is the width 1.406? The way Igor
defines its gauss fit function, width is sigma*Zl/ 2,

Enter this command in the command line:
Print 1.406/sqgrt(2)
The result, 0.994192, is pretty close to 1.0.

It is often useful to plot the residuals from a fit to check for various kinds of problems. For that
you need to use the Curve Fit dialog.

Choose Analysis—>Curve Fitting,.

Click the Function and Data tab and choose gauss from the Function menu.
Choose fakeY Hist (not fakeY) from the Y Data menu.

Leave the X Data pop-up menu set to “_calculated_".

Click the Data Options tab. If there is text in the Start or End Range boxes, click the Clear but-
ton in the Range section.

Choose W_SqrtN from the Weighting pop-up menu.

Just under the Weighting pop-up menu there are two radio buttons. Click the top one which
is labeled “Standard Deviation”.

Click the Output Options tab and choose “_auto_"” from the Destination pop-up menu.

Set the Residual pop-up menu to “_auto trace_".

Residuals will be calculated automatically and added to the curve fit in our graph.
Click Do It.

The curve fit starts, does a few passes, and waits for you to click OK.

eoe Craph0:fakeY_Hist,...:...

a0
40 2
0 % SRy L G T I SR

G000 —

i

There is one small issue not addressed above. One of the bins contains zero; the square root of
zero is, of course, zero. So the weighting wave contains a zero, which causes the curve fit to ignore
that data point. It's not clear what is the best approach to fixing that problem. Some replace the
zero with a one. These commands replace any zeroes in the weighting wave and re-do the fit:

W SqrtN = W SgrtN[p] == 0 2 1 : W _SqrtN[p]
CurveFit/NTHR=0 gauss fakeY Hist /W=W SqrtN /I=1 /D /R

This doesn’t change the result very much, since there was just one zero in the histogram:

Coefficient values * one standard deviation
yv0 =-0.40357 + 0.464
A =644.76 + 7.98

I-57

Chapter I-2 — Guided Tour of Igor Pro

x0 =-0.0014186 * 0.00996
width =1.4065 * 0.0115

Curve Fit Residuals (Optional)

This section and the next one are primarily of interest to people who want to use Igor programming to auto-
mate tasks.

In the next section, as an illustration of how the history area can be used as a source of commands to gen-

erate procedures, we will create a procedure that appends residuals to a graph. The preceding section illus-
trated that Igor is able to automatically display residuals from a curve fit, so the procedure that we write in
the next section is not needed. Still, it demonstrates the process of creating a procedure. In preparation for
writing the procedure, in this section we append the residuals manually.

If the curve fit to a Gaussian function went well and if the gnoise function truly produces noise with a
Gaussian distribution, then a plot of the difference between the histogram data and the fitted function
should not reveal any curvature.

0.

=N =

10.

I-58

To remove the automatically generated residual from the Gaussian fit in the previous section,
Control-click (Macintosh) or right-click (Windows) directly on the residual trace at the top of
the graph and select Remove Res_fakeY_Hist from the pop-up menu.

Choose the Data—Duplicate Waves menu item.

Choose fakeY_Hist from the Template pop-up menu.

In the first Names box, enter “histResids”.

Click Do It.

You now have a wave suitable for containing residuals.

In the history area of the command window, find the line that reads:

fit fakeY Hist= W coef[0]+ W coef[l]*exp (- ((x-W coef[2])/W coef[3])"2)

W_coef is a wave created by the CurveFit operation to contain the fit parameters. W_coef[0] is the
y0 parameter, W_coef[1] is the A parameter, W_coef[2] is the x0 parameter and W_coef[3] is the
width parameter.

This line shows conceptually what the CurveFit operation did to set the data values of the fit des-
tination wave.

Click once on the line to select it and then press Return or Enter once.
The line is transferred to the command line.
Edit the line to match the following:

histResids= fakeY Hist - (W _coef[0]+W coef[l]*exp (- ((x-
W _coef[2])/W _coef[3])"2))

In other words, change “fit_fakeY_Hist” to “histResids”, click after the equals and type
“fakeY_Hist - (” and then add a “)” to the end of the line.

The expression inside the parentheses that you added represents the model value using the
parameters determined by the fit. This command computes residuals by subtracting the model
values from the data values on which the fit was performed.

Note: If the fit had used an X wave rather than calculated X values then it would have been
necessary to substitute the name of the X wave for the “x” in the expression.

Press Return or Enter.

This wave assignment statement calculates the difference between the measured data (the output of
the Histogram operation) and the theoretical Gaussian (as determined by the CurveFit operation).

Now we will append the residuals to the graph stacked above the current contents.
Choose Graph—>Append Traces to Graph.

Select histResids from the Y wave(s) list and “_calculated_” from the X wave list.

Chapter I-2 — Guided Tour of Igor Pro

11.
12.
13.

14.

15.

16.
17.
18.
19.

20.
21.

22.
23.
24.
25.
26.

27.
28.

29.
30.

Choose New from the Axis pop-up menu under the Y Wave(s) list.
Enter “Lresid” in the Name box and click OK.

Click Do It.

The new trace and axis is added.

Now we need to arrange the axes. We will do this by partioning the available space between the
Left and Lresid axes.

Double-click the far-left axis.

The Modify Axis dialog appears. If any other dialog appears, cancel and try again making sure
the cursor is over the axis.

If you have enough screen space you will be able to see the graph change as you change settings in
the dialog. Make sure that the Live Update checkbox in the top/right corner of the dialog is selected.

Click the Axis tab.

The Left axis should already be selected in the pop-up menu in the top-left corner of the dialog.
Set the Left axis to draw between 0 and 70% of normal.

Choose Lresid from the Axis pop-up menu.

Set the Lresid axis to draw between 80 and 100% of normal.

Choose Fraction of Plot Area in the “Free axis position” menu.

The Lresid axis is a “free” axis. This moves it horizontally so it is in line with the Left axis.
Choose Bottom from the Axis pop-up menu.

Click the Axis Standoff checkbox to turn standoff off.

Just a couple more touch-ups and we will be done. The ticking of the Lresid axis can be improved.
The residual data should be in dots mode.

Choose Lresid from the Axis pop-up menu again.
Click the Auto/Man Ticks tab.

Change the Approximately value to 2.

Click the Axis Range tab.

In the Autoscale Settings area, choose “Symmetric about zero” from the menu currently read-
ing “Zero isn’t special”.

Click the Do It button.

Double-click the histResids trace.

The Modify Trace Appearance dialog appears with histResids already selected in the list.
Choose Dots from the Mode pop-up menu

Set the line size to 2.00.

I-59

Chapter I-2 — Guided Tour of Igor Pro

31.

Click Do It.
Your graph should now look like this:
80e Craph0:fakeY_Hist,.......
204

[e T
-50- .

G000 —

Writing a Procedure (Optional)

In this section we will collect commands that were created as we appended the residuals to the graph. We
will now use them to create a procedure that will append a plot of residuals to a graph.

I-60

1.

10.

Click the zoom button (Macintosh) or the maximize button (Windows) of the command win-
dow to enlarge it to fill the screen.

Find the fifth line from the bottom that reads:
*AppendToGraph/L=Lresid histResids

Select this line and all the lines below it and press Command-C (Macintosh) or Ctrl+C (Win-
dows) to copy them to the Clipboard.

Click the zoom button (Macintosh) or the restore button (Windows) of the command window
to return it to its normal size.

Choose the Windows—>New—>Procedure menu item.
Type “Append Residuals” (without the quotes) in the Document Name box and click New.

A new procedure window appears. We could have used the always-present built-in procedure win-
dow, but we will save this procedure window as a stand-alone file.

Add a blank line to the window, type “Function AppendResiduals()”, and press Return or Enter.

Press Command-V (Macintosh) or Ctrl+V (Windows) to paste the commands from the history
into the new window.

Type “End” and press Return or Enter.

Select the five lines that you pasted into the procedure window and then choose Edit—Adjust
Indentation.

This removes the bullet characters from the history and prepends tabs to apply the normal inden-
tation for procedures.

If you are running on an Asian-language system, you will have asterisks at the start of each line
and you must remove them manually.

Your procedure should now look like this:

Function AppendResiduals ()
AppendToGraph/L=Lresid histResids
ModifyGraph nticks (Lresid)=2, standoff (bottom)=0,
axisEnab (left)={0,0.7};DelayUpdate
ModifyGraph axisEnab (Lresid)={0.8,1}, freePos(Lresid)=0;DelayUpdate
SetAxis/A/E=2 Lresid
ModifyGraph mode (histResids)=2,1size (histResids)=2
End

Chapter I-2 — Guided Tour of Igor Pro

11.

12.

13.

14.

15.

16.
17.

18.

19.
20.

Delete the “;DelayUpdate” at the end of the two ModifyGraph commands.
DelayUpdate has no effect in a function.

We now have a nearly functional procedure but with a major limitation — it only works if the resid-
uals wave is named “histResids”. In the following steps, we will change the function so that it can be
used with any wave and also with an XY pair, rather than just with equally-spaced waveform data.

Convert the first two lines of the function to match the following:

Function AppendResiduals (ywave, xwave)
String ywave, xwave

if (CmpStr (" calculated ",xwave) == 0)
AppendToGraph/L=Lresid S$ywave
else
AppendToGraph/L=Lresid $ywave vs $xwave
endif

In the last ModifyGraph command in the function, change both “histResids” to “$ywave”.

The “$” character converts the string expression that follows it into the name of an Igor object (see
String Substitution Using $ on page IV-14 for details).

Here is the completed procedure.

Function AppendResiduals (ywave, xwave)
String ywave, xwave

if (CmpStr (" calculated ",xwave) == 0)
AppendToGraph/L=Lresid S$ywave
else
AppendToGraph/L=Lresid $ywave vs $xwave
endif
ModifyGraph nticks (Lresid)=2, standoff (bottom)=0,axisEnab (left)={0,0.7}
ModifyGraph axisEnab (Lresid)={0.8,1}, freePos(Lresid)=0
SetAxis/A/E=2 Lresid
ModifyGraph mode (Sywave)=2,1lsize ($ywave)=2
End

Let’s try it out.
Click the Compile button at the bottom of the procedure window to compile the function.
If you get an error, edit the function text to match the listing above.

Click the close button in the Append Residuals procedure window. A dialog will ask if you
want to kill or hide the window. Click Hide.

If you press Shift while clicking the close button, the window will be hidden without a dialog. (Use
the Help—Shortcuts menu to learn about this and other shortcuts.)

Choose Windows—>New Graph.

Choose fakeY_Hist from the Y Wave(s) list and _calculated_ from the X Wave list and click Do It.
A graph without residuals is created.

In the command line, execute the following command:

AppendResiduals ("histResids", " calculated ")

The AppendResiduals function runs and displays the residuals in the graph, above the original
histogram data.

Next, we will add a function that displays a dialog so we don’t have to type wave names into the
command line.

Use the Windows—>Procedure Windows menu to show the Append Residuals procedure window.
Enter the following function after the AppendResiduals function.

Function AppendResidualsDialog()
String ywave, xwave

Prompt ywave, "Residuals Data",popup WaveList ("*",";","")

I-61

Chapter I-2 — Guided Tour of Igor Pro

I-62

21.

22.
23.

24.

25.
26.
27.

28.
29.

30.

31.

32.

33.

34.
35.
36.

Prompt xwave,"X Data",popup " calculated ;"+WaveList ("*", ";",6"")
DoPrompt "Append Residuals", ywave, xwave
if (v_flag != 0)
return -1; // User canceled.
endif

AppendResiduals (ywave, xwave)
End

This function will display a dialog to get parameters from the user and will then call the
AppendResiduals function.

Let’s try it out.

Click the Compile button at the bottom of the procedure window to compile the function.
If you get an error, edit the function text to match the listing above.

Shift-click the close button to hide the procedure window. Then activate the graph.

Control-click (Macintosh) or right-click (Windows) on the residual trace at the top of the graph
and select Remove histResids from the pop-up menu.

The axis displaying histData will stay short because the residuals were not appended to the graph
automatically.

On the command line, execute the following command:

AppendResidualsDialog ()

The AppendResidualsDialog function displays a dialog to let you choose parameters.

Choose histResids from the Residuals Data pop-up menu.

Leave the X Wave pop-up set to “_calculated_".

Click Continue.

The graph should once again contain the residuals plotted on a new axis above the main data.
Next we will add a menu item to the Macros menu.

Use the Windows—>Procedure Windows menu to open the Append Residuals procedure window.
Enter the following code before the AppendResiduals function:

Menu "Macros"
"Append Residuals...", AppendResidualsDialog()
End

Click the Compile button.
Igor compiles the function and adds the menu item to the Macros menu.

Press Command-E (Macintosh) or Ctrl+E (Windows) to send the procedure window to the
back, and then activate the graph.

Control-click (Macintosh) or right-click (Windows) on the residual trace at the top of the graph
and select “Remove histResids” from the pop-up menu.

Click the Macros menu and choose the “Append Residuals” item
The procedure displays a dialog to let you choose parameters.
Choose histResids from the Residuals Data pop-up menu.

Leave the X Wave pop-up menu set to “_calculated_".

Click the Continue button.

The graph should once again contain the residuals plotted on a new axis above the main data.

Chapter I-2 — Guided Tour of Igor Pro

Saving a Procedure File (Optional)

Note:

If you are using the demo version of Igor Pro beyond the 30-day trial period, you cannot save a procedure file.

Now that we have a working procedure, let’s save it so it can be used in the future. We will save the file in
the "Igor Pro User Files" folder - a folder created by Igor for you to store your Igor files.

1.

gk W N

Choose Help—>Show Igor Pro User Files.
Igor opens the "Igor Pro User Files" folder on the desktop.

By default, this folder has the Igor Pro major version number in its name, for example, "Igor Pro
6 User Files", but it is generically called the "Igor Pro User Files" folder.

Note where in the file system hierarchy this folder is located as you will need to know this in a
subsequent step. The default locations are:

Macintosh: /Users/<user>/Documents/WaveMetrics/Igor Pro 6 User Files
Windows: <My Documents>\WaveMetrics\Igor Pro 6 User Files

We will save the procedure file in the "User Procedures" subfolder of the Igor Pro User Files
folder. You could save the file anywhere on your hard disk, but saving in the User Procedures
subfolder makes it easier to access the file as we will see in the next section.

Back in Igor, activate the Append Residuals procedure window again.
Choose the File—Save Procedure As menu item.

Enter the file name “Append Residuals.ipf”.

Navigate to your Shared Procedures folder and click Save.

The Append Residuals procedure file is now saved in a stand-alone file.
Click the close button on the procedure window.

Igor will ask if you want to kill or hide the file. Click Kill. This removes the file from the current
experiment, but it still exists on disk and you can open it as needed.

There are several ways to open the procedure file to use it in the future. One is to double-click it.
Another is to choose the File—>Open File—Procedure menu item. A third is to put a #include
statement in the built-in procedure window, which is how we will open it in the next section.

Including a Procedure File (Optional)

The preferred way to open a procedure window that you intend to use from many different experiments is
to use a #include statement. This section demonstrates how to do that.

Note:

If you are using the demo version of Igor Pro beyond the 30-day trial period, you did not create
the Append Residuals.ipf file in the preceding section so you can’t do this section. See The
Include Statement on page IV-145 for details about including procedure files.

In Igor, use the Windows—>Procedure Windows menu to open the built-in procedure window.
At the top of the built-in procedure window, notice the line that says:

#pragma rtGlobals = 1

This is technical stuff that you can ignore.

Under the rtGlobals line, leave a blank line and then enter:

#include "Append Residuals"

Click the Compile button at the bottom of the built-in procedure window.

Igor compiles the procedure window. When it sees the #include statement, it looks for the
Append Residuals.ipf procedure file in the User Procedures folder and opens it. You don't see it
because it was opened hidden.

I-63

Chapter I-2 — Guided Tour of Igor Pro

5.

Use the Windows—>Procedure Windows menu to verify that the Append Residuals procedure
file is in fact open.

To remove the procedure file from the experiment, you would remove the #include statement
from the built-in procedure window.

#include is powerful because it allows procedure files to include other procedure files in a chain.
Each procedure file automatically opens any other procedure files it needs.

User Procedures is special because Igor searches it to satisfy #include statements.

Another special folder is Igor Procedures. Any procedure file in Igor Procedures is automatically
opened by Igor at launch time and left open till Igor quits. This is the place to put procedure files
that you want to be open all of the time.

This concludes Guided Tour 3.

I-64

Chapter I-2 — Guided Tour of Igor Pro

For Further Exploration

We developed the guided tours in this chapter to provide an overview of the basics of using Igor Pro and
to give you some experience using features that you will likely need for your day-to-day work. Beyond
these fundamentals, Igor includes a wide variety of features to facilitate much more advanced graphing and
analysis of your data.

As you become more familiar with using Igor, you will want to further explore some of the additional learn-
ing and informational aids that we have included with Igor Pro.

¢ The Igor Pro manual is installed on your hard disk in PDF format. You can access it through the Igor
Help Browser or open it directly from the Manual folder in the Igor Pro Folder.

The material in the manual is the same as the material in the online help files but is organized in
book format and is therefore better suited for linear reading. Unlike the help files, the PDF manual
includes an index. You may want to print selected chapters. You can purchase hard copy of the Igor
Pro manual from <http://www.lulu.com/wavemetrics>.

The most important chapters at this point in your Igor learning curve are Chapter II-3, Experiments,
Files and Folders and Chapter II-5, Waves. If you want to learn Igor programming, read Chapter
IV-1, Working with Commands, Chapter V-2, Programming Overview, and Chapter IV-3, User-
Defined Functions.

* The Igor Help Browser provides online help, including reference material for all built-in operations and
functions, an extensive list of shortcuts, and the ability to search Igor help files, procedure files, exam-
ples and technical notes for key phrases. See Igor Help Browser on page II-6 for more information.

e The Examples folder contains a wide variety of sample experiments illustrating many of Igor’s
advanced graphing and programming facilities. You can access these most easily through the
File—Example Experiments submenus.

¢ The Learning Aids folder contains additional guided tours and tutorials including a tutorial on image
processing. You can access these through the File—>Example Experiments—>Tutorials submenus.

* A tutorial on 3D visualization can be found in the Visualization help window, accessible through
the Windows—>Help Windows menu.

* The More Help Files folder contains several supplementary help files. Use the File—>Open
File—Help Files menu item to open them.

* The WaveMetrics Procedures folder contains a number of utility procedures that you may find
useful for writing your own procedures and for your more advanced graphing requirements. For
an overview of the WaveMetrics procedures and easy loading of the procedure files, choose
Windows—>Help Windows—>WM Procedures Index.

® The More Extensions folder contains a number of External Operations (XOPs), which add
functionality not built into the Igor Pro application. Read the included help files to find out more
about the individual XOPs and how to install them, or consult the External Operations Index in the
XOP Index help file, which has brief description of each XOP.

e The Technical Notes folder contains miscellaneous additional information and services. Tech Note
#000 contains an index to all of the other notes.

¢ TheIgor Pro mailing list is an Internet mailing list where Igor users share ideas and help each other.
See Igor Mailing List on page II-15 or select the Help—>Support menu and then select Igor Mailing
List from the Support Options list for information about the mailing list.

¢ IgorExchange is a user-to-user support web page and a repository for user-created Igor Pro projects.
Choose Help—IgorExchange to visit it.

I-65

http://www.lulu.com/wavemetrics
http://www.igorexchange.com

Chapter I-2 — Guided Tour of Igor Pro

I-66

Volume I User’s Guide: Part 1

Table of Contents

II-1 Getting Helpccocovviiiiiiiiiiiiiiiiiciccce, II-1
II-2 The Command Windowcccceeevveeevreecereccreeennee. II-17
II-3 Experiments, Files and Foldersccccceeurnnnnnnn I1-25
II-4 WINAOWS ..oviiiiiieeeeeeeeeeeeete ettt et II-51
II-5 WAVES et I1-73
II-6 Multidimensional Wavesc.cccceeevveeeeeveecreennenns 1I-101
II-7 Numeric and String Variablesccccccueeinnnene. II-109
II-8 Data FOIderscoouimeiiieieeeeeeeeeeeeeeeeeeeeeee e, II-115
II-9 Importing and Exporting Dataccccceeuriinnnnes 11-133
II-10 Dialog Featuresccccceoeviviiiviiiiiniiiniiciiciine, II-173
II-11 TADIES ittt ettt 11-181
II-12° Graphs ..cccceeivieiiiiiicicccccccceeees 11-227
[I-13 Category Plots ..o, 11-299
II-14 Contour PIOtScccvieeiieeieeeeeeeeeeeee e 11-309
II-15 Image PIOtSccoueiiriiiiiiiiiiiiiccicccce I1-331

II-16 Page Layoutscccccoviviiiiiiiiiiniiciiciciccne 11-353

Chapter

Getting Help

OVETVIBW ..ottt a s b s bt a e bsa e 3
Online Manual.........ccccoviiiiiii e 3
WaveMetrics SUPPOrt Web Page ..o 3
ONLNE HELIP...uiite et 3
Igor Tips (MACINOS)ocuiiiiiiicieiccc e 4
User-Defined IGOr TIPSccoviieieiiiicieicee et 4
Status Line Help, Tool Tips and Context-Sensitive Help (Windows)..........cccovviiiiiniiiiiiiccnnen. 4
Status Line HelPcouviiii e 5
TOOL THPS ettt et 5
Context-Sensitive HElP ... e 5
IMIEIIUS ...ttt et 5
JEOMIS ...ttt 5
DHALOZS. ...ttt 5
IEOT SNOTECULS HELP ...t e 5
Help from a Procedure Window or the Command Linecccceeeeiiiiinciiiiinccnceeeeeeeeeenenens 5
The Help Button in DIalogscevevriririririririrrererr sttt 6
IZOT HELP BIOWSET ..ottt e 6
HELIP TOPICS TAD ..ottt 6
SROTECULS TaDoiiiieiiiiii e 6
Command HELP Tabcvv e 6
S€arch IGOT Files Tabccocoiiiiiiirc et 7
Search EXPIeSSion ...t 8
S€arCh FOLAETS ...ttt 8
TYPES Of FILES......oiiiiii e 9
5€aICh RESULILS.......oeiviiiiiii e 9
Search STrate@iesouoiiuiiiiiicic e 9
S@ATCh SPEEA......oiieee e 9
ManUAL TaD ..o s 9
SUPPOTE TAD .o s 10
IGOT HEIP FIIES ..ot 10
Igor Help WINAOWS ..ottt 10
Hiding and Killing a Help WINdOW ... s 11
Executing Commands from a Help Window ..o 11
Compiling Help FAles.......couoiiieieii ettt 11
Creating Your Own Help File (For Advanced USeTs)cccceueuiirieiiiiiiicieeeeciccc s 11
Syntax of @ Help File ... s 12
Creating LINKS ...ttt 13
ChecKing LANKS.......oouiiiieieie ettt ettt 13
TeChNICAl SUPPOTIt vt 14
EMail SUPPOIt....oiiiie e 14
FTP SIEES ..ottt 14
WOTId Wide WED ..o 14
WaveMetrics SUppOrt Web Page..........oocuoiiiiiiiie s 15
IgOT Mailing List.......cvoviiecieie et 15

IEOTEXCRANGE ...t 15

Chapter II-1 — Getting Help

TelePhone SUPPOTLcoviiiiiii e
FAX SUPPOTT...oviiiiiiicc s
HEIP SNOTECULS ...

II-2

Chapter lI-1 — Getting Help

Overview

There are a number of sources of information on using Igor:
® The Igor Pro online manual

® The online help system

¢ WaveMetrics support web page

¢ WaveMetrics Technical Support

® The Igor mailing list

® The IgorExchange user-to-user support web page

Online Manual

The Igor Pro installer installs the entire Igor Pro manual as an Adobe PDF (portable document format) file. You
need Adobe Reader or a comparable PDF viewer, such as Apple’s Preview, to view the online manual.

From within Igor Pro you can launch your PDF viewer program and view the online manual by choosing
Help—Manual. From the desktop you can view the manual by double-clicking the IgorMan.pdf file in “Igor
Pro Folder/Manual”.

The PDF manual includes a fast-search index for Acrobat Reader version 6 or later. To activate the fast
search index, open the IgorMan.pdf file in Acrobat Reader 6 or later, choose Edit—Search, and select the
IgorMan.pdx file.

The PDF manual is available in hard-copy form from http://www.lulu.com/wavemetrics.

WaveMetrics Support Web Page

For up-to-date information on Igor Pro, visit the WaveMetrics support Web page at:

http://www.wavemetrics.com/support/

From this web page you can search our support database, search archives of the Igor Mailing List and find
links to updaters.

You can access this page by choosing Help—Support Web Page.

Online Help

Igor provides several forms of online help:
® The Igor help system
¢ Macintosh Igor Tips

* Windows status line help, context-sensitive help, and tool tips

The Igor help system is the same on Macintosh and Windows. Its major elements are Igor help files and the
Igor Help Browser.

This table summarizes the ways to access online help in Igor.

Help Access Method What It Is Good For
The Igor Help Browser window Finding a specific topic or subtopic in the Igor help files, learning
(Help menu) about handy shortcuts, getting help for operations, functions and

programming keywords, and searching Igor files for specific phrases.

The Help button that appears in Getting a general idea of how to use the dialog.
many dialogs

II-3

http://www.wavemetrics.com/support/
http://www.lulu.com/wavemetrics

Chapter II-1 — Getting Help

Templates in procedure windows Getting the syntax of built-in and external functions and
operations and flow-control structures.

Igor Tips (Macintosh only) Clarifying the meaning of icons, menu items and dialog items.
Identifying traces in graphs and columns in tables.

Status line help (Windows only) Displaying a brief description of menu items and tools.

Tool tips (Windows only) Displaying a short description of a button or tool.

Context-sensitive help (Windows only) ~ Getting more detail than is available from the status line help.

* Chapter III-13, Procedure Windows describes the use of templates in procedure windows. This chapter
covers the other help access methods listed in the table.

The main sources of information for help are the files in the Igor Help Files folder. Igor automatically opens
files in this folder when it starts up.

Igor also automatically opens help files in "Igor Pro User Files/Igor Help Files" (see Igor Pro User Files on
page 11-45 for details). If you want an additional help file to be automatically opened, put it or an alias/short-
cut for it in that folder.

Addtional WaveMetrics help files can be found in "Igor Pro Folder/More Help Files". You can open these
help files by double-clicking them or using the Open File submenu in the File menu. You can search these
files (and all help files in the Igor Pro Folder and in the Igor Pro User Files folder) using the Search Igor Files
tab of the Igor Help Browser.

Many Igor extensions come with help files describing their use. These help files are stored in the same folder
as the extension itself — in either "Igor Pro Folder/Igor Extensions" or "Igor Pro Folder/More Extensions".

Igor’s help system is extensible. You can write your own help files and add balloons help or context-sensi-
tive help for your own menu items and controls. This is something that you might want to do if you write
Igor procedures to be used by others.

Igor Tips (Macintosh)

We've tried to provide concise yet useful tips for nearly every menu item, dialog item and icon in Igor.
There are two ways to show the Igor Tips window:

® Choose Help—Show Igor Tips.
¢ Press Option-Help.

If your keyboard lacks a Help key you must use the Help menu.

Once you've turned Igor Tips on, position the cursor over a menu item, dialog item or icon. In most cases,
Igor will present a window that will explain what that item is good for.

Note: Pressing Option-Help toggles Igor Tips off or on.

You can also use Igor Tips to get information about traces in graphs and columns in tables. However, these
Igor Tips appear only while you press Command-Option-Control and click a trace or column. Showing Igor
Tips with the Help menu will not do it.

User-Defined Igor Tips

You can define tips for menu items and controls created by your Igor procedures. See Help for User Menus
on page IV-108 and Help Text for User-Defined Controls on page III-378.

Status Line Help, Tool Tips and Context-Sensitive Help (Windows)

On Windows Igor provides three ways to get help for icons, menu items and dialog items. These are status
line help, tool tips, and context-sensitive help.

I1-4

Chapter lI-1 — Getting Help

Status Line Help

The status line area at the bottom of the main Igor Pro window shows brief descriptions of icons and menu
items. This help is shown automatically; you don’t have to do anything to make it appear.

Tool Tips
If you point at an icon in an Igor Pro window, a tool tip will appear after a short delay. It contains just a two
or three word description of the button.

You can adjust the delay before the tool tip appears, and the duration of display in the Help page of the
Miscellaneous Settings dialog, which you can choose from the Misc menu.

Context-Sensitive Help

Context-sensitive help (sometimes referred to as F1 help) is displayed in a pop-up window and provides
more detail than the status line help. It is accessed in several different ways depending on the type of item
you need help for.

Menus

For help on items in a menu, pull down the menu and highlight the item of interest. Then press the F1 key
to display the context-sensitive help window.

Icons

For help on icons in windows such as graphs and tables, hold down Shift and press F1. This changes the
mouse cursor to a question-mark; click on a button or icon to display the context-sensitive help window.

Dialogs
Help for individual items in Igor’s dialogs can be summoned by clicking the question-mark button at the
right end of the dialog’s title bar, then clicking on the item for which you want help.

Igor Shortcuts Help

Igor supports a number of very handy shortcuts. The Shortcuts tab of the Igor Help Browser lists these
shortcuts, organized in logical categories.

Help from a Procedure Window or the Command Line

There is a quick and easy way to get help for a function, operation or flow-control keyword from the
command line or from a procedure, notebook or help window. Type or select the name or keyword.
Control-click (Macintosh) or right-click (Windows) and choose help from the resulting menu.

Here are some keyboard shortcuts for summoning help.

Keyboard Shortcut What It Does

Macintosh Windows

Press Help Press F1 Displays Help Browser window

Press Shift-Help Press Ctrl+F1 Inserts template for selected function, operation or flow-

control keyword

Press Shift-Option-Help ~ Press Ctrl+Alt+F1 ~ Shows help for selected function, operation or flow-
control keyword

II-5

Chapter II-1 — Getting Help

The Help Button in Dialogs

The Help button in Igor dialog’s provides an overview of the dialog and tips for using it. Use Igor Tips (Mac-
intosh) or context-sensitive help (Windows) for information on individual dialog items.

Igor Help Browser

The Igor Help Browser is designed to provide quick access to the most frequently-used Igor reference mate-
rial and also to provide a starting point in searching for other kinds of information. You can display the Igor
Help Browser by

¢ Choosing Igor Help Browser from the Help menu.
® Pressing the Help key (Macintosh) or F1 key (Windows).
¢ Clicking the Igor Help Browser icon in the command window.

The Igor Help Browser consists of six tabs.

Help Topics Tab
The Help Topics tab provides a table of contents for the open Igor help files. When you first launch Igor, Igor
opens the help files in "Igor Pro Folder/Igor Help Files" and "Igor Pro User Files/Igor Help Files".

The Topics list initially presents all topics in all open help files. You can choose a specific help file from the
Show Topics From pop-up menu to narrow the scope of topics. Once you locate and select the topic of inter-
est in the Topics list, the Subtopics list displays subtopics within that topic, if any exist.

After selecting a topic and optionally a subtopic, click the Show Selected Topic button to see the help.

If you know that the information that you are looking for is in a help file that is not normally open, for exam-
ple, in a help file associated with an Igor extension, click the Open Another Help File button. Most addi-
tional help files can be found in "Igor Pro Folder/More Help Files", "Igor Pro Folder/Igor Extensions" or
"Igor Pro Folder/More Extensions".

If you don’t know what help file or what topic may contain the information of interest, use the Search Igor
Files tab instead of the Help Topics tab.

Shortcuts Tab

The Shortcuts tab presents a list of shortcuts, organized in functional groups.

Command Help Tab

The Command Help tab provides quick access to reference information on Igor functions, operations and
programming keywords. When you choose a function, operation or keyword in the list, Igor displays the
associated help.

II-6

Chapter lI-1 — Getting Help

eean Help Browser
[Help Topics | Shortcuts | Command Help | Search Igor Files Manual = Support }
W Functions Al 3
W operations | Al '+
: Programming Al I :] Thread Safe: Yes l'r Copy Template \l
ProcedureText
Project) . .)
PulseStats [/=0 /B=fay /F=r fL=(af i owal, sariaser Y M=ay FPI ("']
Pulsestats SR=C At et fT=dv | swsediame —
e PulseStats operation produces simple statistics ona region of the named +
PutScrapText The PulseStat ti d imple statisti ion of th d
q that is expected to contain three edges as shown below . |f more than three edge

qcsr exist, PulseStats works an the first three edges it finds.
Uit m

point O

r — startlevel oint 3
répolar o ~F
RatioF Numb level 1

InFrommUmBer Caze 1: 3 edges. endlevel —
real : :
Redimension 2 starty end
Fe move v (’_ 4|

A checkbox for each of the three main categories adds or removes the associated items from the list. The
pop-up menu next to each checkbox further narrows the scope of the list.

The Copy Template button copies a template to the Clipboard which you can then paste into the command
line or into a procedure window. All functions and operations have templates, but only some keywords do.

Here is a tip to help you understand the distinction between an operation and a function: a function returns
a direct result (e.g., sin) while an operation does not (e.g., Display).

Search Igor Files Tab

The Search Igor Files tab provides a way for you to search Igor help files, procedure files, and notebooks for
information of interest.

I1-7

Chapter II-1 — Getting Help

8ean Help Browser

[Help Topics | Shortcuts Command Help | Search Igor Files | Manual = Support }

Search for: interpolate and spline “and” means within 0 paragraphs f Tips L]

| Case Sensitive || Whole Word
In: @ Help Files [| Topics and Subtopics Only In: @The Igor Pro Folder : The Igor Pro User Files
[Procedure Files | Another Folder (Choose)

@ Motebooks hd:Work:Current:

[] Files With Extension _htm

@Eearch in packed experiments

() Search Resuks
Mumber of occurrences of "interpolate and spline" found: £3. m
Click the blue text to open a file.
%:teboﬂk: "hd: Wark:laor Pro & Folder:Examples:Feature Demos:spline Demo.o ¥
4|

Search Expression

The expression can consist of one or more (up to 8) terms. Terms are separated by the word “and”. Here are
some examples:

interpolation One term
spline interpolation One term
spline and interpolation Two terms
spline and interpolation and smoothing Three terms

The second example finds the exact phrase “spline interpolation” while the third example finds sections
that contain the words “spline” and “interpolation”, not necessarily one right after the other.

The only keyword supported in the search expression is “and”. “Or” and “near” are not supported. Also,
quotation marks in the search expression don’t mean anything special and should not be used.

If your search expression includes more than one term, a text box appears in which you can enter a number
that defines what “and” means. For example, if you enter 10, this means that the secondary terms must
appear with 10 paragraphs of the primary term to constitute a hit. A value of 0 means that the terms must
appear in the same paragraph. In a plain text file, such as a procedure file, a paragraph is a single line of
text. Blank lines count as one paragraph.

Search Folders
You can search the Igor Pro Folder and all subfolders by selecting the associated checkbox. This is intended
for situations in which you are looking for help on Igor features or examples of Igor programming.

You can search another folder and all subfolders by selecting the Another Folder checkbox and then by
clicking the Choose button to specify the folder. This is useful when searching your own files or if you want
to search a specific folder inside the Igor Pro Folder.

II-8

Chapter lI-1 — Getting Help

Types of Files

You can choose what type of files Igor should search: help files, procedure files, notebooks, or files with a
specific extension. You can also look for notebooks and procedure files inside packed Igor experiment files.

When Igor searches notebooks, it searches both formatted notebooks (including Igor technical notes) and
plain text notebooks. On Macintosh, any file whose file type is ' TEXT ' is considered to be a plain text note-
book. On Windows, any file whose extension is “.txt” is considered to be a plain text notebook.

On Macintosh, Igor procedure files have the file type ' TEXT'. Other kinds of plain text files, such as data
files and readme files, also have the file type ' TEXT' so Igor can not distinguish a procedure file from some
other kind of plain text file. When you search procedure files, it searches all plain text files in the specified
folder and subfolders.

On Windows, procedure files use the extension “.ipf” while various kinds of plain text files use other extensions,
such as “.dat” and “.txt”. When you search procedure files, it searches only files with the “.ipf” extension.

On both platforms, you can search files with a specific extension (“.txt”, “.dat”) using the Files With Exten-
sion checkbox.

Search Results

Igor displays hits (occurrences of the search expression) in the Search Results windoid. At the top of the
windoid, Igor displays the total number of hits.

Each hit is displayed as a file reference, in blue text, and the contents of the paragraph containing the hit, in
black text. To open the file containing the hit, click the blue text.

To reduce clutter, if a single paragraph contains the search expression multiple times, this is considered to
be one hit and is displayed as one file reference.

When you click a hit that refers to a stand-alone help file, procedure file or notebook, Igor opens the file and
displays the paragraph containing the hit, highlighting the first term in the search expression.

If you click a hit that refers to a notebook or procedure file in a packed experiment, Igor can not open the
file directly. It presents a dialog with two options:

* Open the experiment containing the file that contains the hit.
* Create and open a copy of the file that contains the hit.

Search Strategies

Usually when you are searching for information about Igor, you should include help files and notebooks and
you should elect to search inside packed experiment files. This is because the examples provided in the Exam-
ples folder of the Igor Pro folder are mostly in the form of packed experiment files that include an explanatory
notebook. Igor technical notes are usually in the form of stand-alone (not packed) notebook files.

If you are searching for user-defined functions in the WaveMetrics Procedures folder, you should elect to
search procedure files. This gives you a handy way to find a function that does something that you need or
to find an example of Igor programming.

Search Speed

Igor’s searching does not use indexing. In other words, Igor opens and reads each file of the specified type
or types in the specified folder or folders, and searches for the search expression. It does not store anything
from one search to another. On slow computers, this may make searches annoyingly slow. In this case, you
can speed things up by reducing the number of types of files to be searched or by more narrowly targeting
the folder to be searched.

The online Igor Pro manual does provide indexed searches. This is described in the next section.

Manual Tab

The Manual tab provides a quick way for you to open the Igor Pro online manual.

II-9

Chapter II-1 — Getting Help

The Open Online Manual button launches your PDF viewer program and opens the IgorMan.pdf file. Igor
expects to find IgorMan.pdf in the “Igor Pro Folder:Manual” folder, where the Igor Pro installer installs it.

The Open Online Manual button displays an error message if it can not find the IgorMan.pdf file in the “Igor Pro
Folder:Manual” folder or if there is no program on your hard disk configured to open PDF files. In this case,
install Adobe Acrobat Reader from the Igor Pro CD or by downloading from <http://www.adobe.com/>.

Support Tab
The Support tab lists additional sources of help with Igor Pro.

Igor Help Files

The Igor installer places help files primarily in "Igor Pro Folder/Igor Help Files" and in "Igor Pro
Folder/More Help Files". Help files for Igor extensions are installed in "Igor Pro Folder/Igor Extensions" and
in "Igor Pro Folder/More Extensions".

When Igor is launched it automatically opens any Igor help files in "Igor Pro Folder/Igor Help Files" and in
"Igor Pro User Files/Igor Help Files". If you want Igor to automatically open another help file, create an alias
(Macintosh) or shortcut (Windows) for that help file and drag it into "Igor Pro User Files/Igor Help Files" (see
Special Folders on page II-44 for details).

Help files that you want to use occasionally can be stored anywhere on your hard disk. You can open them
manually by double-clicking in the desktop, choosing File—>Open File, or clicking the Open Another Help
File button in the Help Topics tab of the Igor Help Browser.

Igor Help Windows

When Igor starts up, it automatically creates help windows by opening the Igor help files stored in "Igor
Pro Folder/Igor Help Files" and in "Igor Pro User Files/Igor Help Files". You can display a help window by
choosing it from the Help Windows submenu in the Windows menu.

Each Igor help file consists of a number of help topics, each of which may contain subtopics, and a list of
related topics.

806 Craphics.ihf
Transparency on Screen and in the Printout 2 |
The part of lgor that draws layout objects inthe layout window is not smart enough to
recognize when an object is inherently opaque. Because of techniques used in drawing the
screen, if you set an inherently opague object to transparent, it will appear transparent
in the layout window but will print opaque,

A subtopic.

List of related topics. ——— Related Tapics: Drawing, annatations, Exparting Graphics {Macintosh} , and Exparting . Click blue underlined text to
Graphics (Windows) o | view another topic.

A main topic. —-+ Annotations @!

Annotations are custorn objects that add information toa graph or a page layout. Most

annotations contain text that ywou might use to describe the contents of a graph, point out a |
feature of a wave, identify the axis that applies to a wave, or create a legend. lgor

automnatical ly creates annotations for labeling contour plots. An annotation can also contain

]
color scales showing the data range associated with colors in contour and i mage plots.

There are four types of annotation: textboxes, legends, color scales, and tags. 3|

Click to search for text =g B (oo (e |4 € =

inopen window. —
i Open wWincow | L Click to return to recently visited topics.
Click for Igor Help Browser. Search files on disk.

All of the topics are in the help file, one after another, like a big word-processing document. To see a list of
topics, use the Igor Help Browser Help Topics tab. Blue underlined phrases are links that take you other
parts of the help file or to other help files.

Click the Find button to search for words or phrases in the active help window. Click the Search button to
search for words or phrases in multiple help files on disk.

II-10

http://www.adobe.com/

Chapter lI-1 — Getting Help

Clicking the Go Back button or pressing Command-B (Macintosh) or Ctrl+B (Windows) takes you back to pre-
vious places in the help that you have visited. If you also press the Shift key, Igor will hide the active help
window if you are going back to a different help window.

Hiding and Killing a Help Window

When you click the close button in a help window, Igor hides it. It also hides the help window if you choose
Hide from the Windows menu or press Command-W (Macintosh) or Ctrl+W (Windows).

If you are finished using an Igor help window, you can kill it. This closes the file, removes its topics from the
Help Browser and kills the window. It does not delete the file. To kill an Igor help file, you must press Option
(Macintosh) or Alt (Windows) while clicking the close FilterFIR or while choosing Close from the Windows menu.

Executing Commands from a Help Window

Help windows often show example Igor commands. To execute a command or a section of commands from
a help window, select the command text and press Control-Enter or Control-Return. This sends the selected
text to the command line and starts execution.

Compiling Help Files

Each Igor help file contains compiled help information that Igor uses to quickly find topics and subtopics. If you
open a help file that has been modified, Igor will ask if you want to “compile” it. Compiling is what creates this
information. This will happen only if you intentionally or accidentally modify a help file and then open it.

Windows: Prior to Igor Pro 5, Igor stored the compiled help information in a separate file with a “.igr” extension.
Now Igor stores the compiled help information in the help file itself. The “.igr” file is no longer needed.

Creating Your Own Help File (For Advanced Users)

You can create an Igor help file that extends the Igor help system. This is something you might want to do
if you write a set of Igor procedures or extensions for use by your colleagues. If your procedures or exten-
sions are generally useful, you might want to make them available to all Igor users. In either case, you can
provide documentation in the form of an Igor help file.

Here are the steps for creating an Igor help file.

1. Create a formatted-text notebook.
A good way to do this is to open the Igor Help File Template provided by WaveMetrics in the More
Help Files folder. Alternatively, you can start by duplicating another WaveMetrics-supplied help file
and then open it as a notebook using File—>Open File—>Notebook. Either way, you are starting with a
notebook that contains the rulers used to format an Igor help file.

2. Choose Save Notebook As from the File menu to create a new file. Use a “.ihf” extension so that Igor
will recognize it as a help file.

3. Enter your help text in the new file.

4. Save and kill the notebook.

5. Open the file as a help file using File—Open File—Help File.

When you open the file as a help file, it needs to be compiled. When Igor compiles a help file, it scans through it
to find out where the topics start and end and makes a note of subtopics. When the compilation is finished, it
saves the help file which now includes the help compiler information.

Once Igor has successfully compiled the help file, it will act like any other Igor help file. That is, when opened it
will appear in the Help Windows submenu, its topics will appear in the Help Browser and you can click links to
jump around.

I1-11

Chapter II-1 — Getting Help

Here are the steps for modifying a help file.

1. If the help file is open, kill it by pressing Option (Macintosh) or Alt (Windows) and clicking the close but-
ton.

Open it as a notebook, using File—>Open File—>Notebook.

Modify it using normal editing techniques.

Choose Save Notebook from the File menu.

Click the close button and kill the notebook.

Reopen it as a help file using File—>Open File—>Help File.

AN N N

Syntax of a Help File

Igor needs to be able to identify topics, subtopics, related-topics declarations and links in Igor help files. To do
this it looks for certain rulers, text patterns and text formats described in Creating Links on page II-13. You can
get most of the required text formats by using the appropriate ruler from the Igor Help File Template file.

Igor considers a paragraph to be a help topic declaration if it starts with a bullet character followed by a tab
and if the paragraph’s ruler is named Topic. By convention, the Topic ruler’s font is Geneva on Macintosh
or Arial on Windows, its text size is 12 and its text style is bold-underlined. The bullet and tab characters
should be plain, not bold or underlined.

The easiest way to create a new topic with the right formatting is to copy an existing topic and then modify it.

Once Igor finds a topic declaration, it scans the body of the topic. The body is all of the text until the next
topic declaration, a related-topics declaration or the end of the file. While scanning, it notes any subtopics.

Igor considers a paragraph to be a subtopic declaration if the name of the ruler governing the paragraph
starts with “Subtopic”. Thus if the ruler is named Subtopic or Subtopic+ or Subtopic2, the paragraph is a
subtopic declaration. By convention, the Subtopic ruler’s font is Geneva on Macintosh or Arial on Windows,
its text size is 10 and its text style is bold and underlined. Text following the subtopic name that is not bold
and underlined is not part of the subtopic name.

The easiest way to create a new subtopic with the right formatting is to copy an existing subtopic and then
modify it.

Igor considers a paragraph to be a related-topics declaration if the ruler governing the paragraph is named
RelatedTopics and if the paragraph starts with the text pattern “Related Topics:”. When Igor sees this
pattern it knows that this is the end of the current topic. The related-topics declaration is optional. Prior to
Igor Pro 4, Igor displayed a list of related topics in the Igor Help Browser. Igor Pro no longer displays this
list. The user can still click the links in the related topics paragraph to jump to the referenced topics.

Igor knows that it has hit the end of the current topic when it finds the related-topics declaration or when
it finds a new topic declaration. In either case, it proceeds to compile the next topic. It continues compiling
until it hits the end of the file.

When compiling the help file, Igor may encounter syntax that it can’t understand. For example, if you have
a related-topics declaration paragraph, Igor will expect the next paragraph to be a topic declaration. If it is
not, Igor will stop the compilation and display an error dialog. You need to open the file as a notebook, fix
the error, save and kill it and then reopen it as a help file.

Another error that is easy to make is to fail to use the plain text format for syntactic elements like bullet-tab,
“Related Topics:” or the comma and space between related topics. If you run into a non-obvious compile error
in a topic, subtopic or related topics declaration, recreate the declaration by copying from a working help file.

The help files supplied by WaveMetrics contain a large number of rulers to define various types of paragraphs
such as topic paragraphs, subtopic paragraphs, related topic paragraphs, topic body paragraphs and so on.
The Igor Help File Template contains many but not all of these rulers. If you find that you need to use a ruler
that exists in a WaveMetrics help file but not in your help file then copy a paragraph governed by that ruler
from the WaveMetrics help file and paste it into your file. This will transfer the ruler to your file.

I1-12

Chapter lI-1 — Getting Help

Creating Links

A link is text in an Igor help file that, when clicked, takes the user to some other place in the help. Igor con-
siders any pure blue, underlined text to be a link. Pure blue means that the RGB value is (0, 0, 65535). By
convention links use the Geneva font on Macintosh and the Arial font on Windows.

To create a link, select the text in the notebook that you are preparing to be a help file. Then choose Make Help
Link from the Notebook menu. This sets the text format for the selected text to pure blue and underlined.

The link text refers to another place in the help using one of the following forms:

8eoe Help.ihf
Link is help topic. 1

. . . . See Getting Help for more infarmation.
Link is in topic[subtopic] form.————— @

Link is subtopic.

! .
See Help Windows for more information. +

&) Search | [GoEBack 168 4|

When the user double-clicks a link, Igor performs the following search:

1. If the link is a topic name, Igor goes to that topic.
2. If the link is in topic[subtopic] form, Igor goes to that subtopic.

3. If steps 1 and 2 fail, Igor searches for a subtopic with the same name as the link. First, it searches for a
subtopic in the current topic. If that fails, it searches for a subtopic in the current help file. If that fails, it
searches for a subtopic in all help files.

4. If step 3 fails, Igor searches all help files in the Igor Pro folder. If it finds the topic in a closed help file, it
opens and displays it.

5. If all of the above fail, Igor displays a dialog suggesting that the required help file is not available.

You can create a link in a help file that will open a Web page or FTP site in the user’'s Web or FTP browser.

You do this by entering the Web or FTP URL in the help file while you are editing it as a notebook. The URL
must appear in this format:

<http://www.wavemetrics.com>
<ftp://ftp.wavemetrics.com>

The URL must include the angle brackets and the “http://” or “ftp://” protocol specifier.

After entering the URL, select the entire URL (including the angle brackets) and choose Make Help Link
from the notebook menu. Once the file is compiled and opened as a help file, clicking the link will open the
user’s Web or FTP browser and display the specified URL.

It is currently not possible make ordinary text into a Web or FTP link. The text must be an actual URL in the
format shown above or you can insert a notebook action which brings up a web page using the BrowseURL
operation on page V-36. See Notebook Action Special Characters on page III-17 for details.

Checking Links
You can get Igor to check your help links as follows:

1. Open your Igor help file and any other help files that you link to.
2. Activate your help window and click at the very start of the help text.

3. Press Command-Shift-Option-H (Macintosh) or Ctrl+Shift+Alt+H (Windows). Igor will check your links
from where you clicked to the end of the file and note any problems by writing diagnostics to the history
area of the command window.

When Igor finishes checking, if it found bad links, kill the help file and open it as a notebook.
Use the diagnostics that Igor has written in the history to find and fix any link errors.

Save the notebook and kill it.

Open the notebook as a help file. Igor will compile it.

Repeat the check by going back to Step 1 until you have no bad links.

® N e

I1-13

Chapter II-1 — Getting Help

You can abort the check by pressing Command-period (Macintosh) or Ctrl-Break (Windows) and holding it
for a second.

The diagnostic that Igor writes to the history in case of a bad link is in the form:

Notebook $nb selection={(33,292), (33,334)} ..

This is set up so that you can execute it to find the bad link. At this point, you have opened the help file as
a notebook. Assuming that it is named Notebook0, execute

String/G nb = "Notebook0"

Now, you can execute the diagnostic commands to find the bad link and activate the notebook. Fix the bad
link and then proceed to the next diagnostic. It is best to do this in reverse order, starting with the last diag-
nostic and cutting it from the history after fixing the problem.

When fixing a bad link, check the following:

* A link is the name of a topic or subtopic in a currently open help file. Check spelling.

® There are no extraneous blue/underlined characters, such as tabs or spaces, before or after the link.
(You can not identify the text format of spaces and tabs by looking at them. Check them by selecting
them and then using the Set Text Format dialog.)

¢ There are no duplicate topics. If you specify a link in topic[subtopic] form and there are two topics
with the same topic name, Igor may not find the subtopic.

Technical Support

WaveMetrics provides technical support via telephone and email.
Before contacting WaveMetrics, please gather this information so that we can help you more effectively:

® The exact version of Igor you are running. The version number is displayed in the About Igor dialog
displayed when Igor is launched.

* Which operating system you are running,.
In most cases, we need to reproduce your problem in order to solve it. It is best if you can provide a simpli-

fied example showing the problem.

Email Support
Send technical questions to us via email at:

support@wavemetrics.com

For information on upgrades and other nontechnical information, send queries to:

sales@wavemetrics.com

FTP Sites

Several FTP sites store the latest versions of Igor technical notes, utilities and user contributions. A list of
these sites is maintained on our support web page at:

http://www.wavemetrics.com/support/

World Wide Web
You will find our Web site at:

http://www.wavemetrics.com/
You can also choose Help—»WaveMetrics Home Page.

Our Web site contains a page for searching our support database, and links to Igor-related FTP sites and to
Igor users” Web pages. In addition, it contains a number of cool graphs. We are always grateful for new cool
graphs. Contact us at sales@wavemetrics.com if you have a cool graph to share.

I1-14

http://www.wavemetrics.com/
mailto:sales@wavemetrics.com
mailto:support@wavemetrics.com
http://www.wavemetrics.com/support/
mailto:sales@wavemetrics.com

Chapter lI-1 — Getting Help

WaveMetrics Support Web Page

The support Web page includes a searchable support database and archives of the Igor Mailing List. The
WaveMetrics support Web address is:

http://www.wavemetrics.com/support/

You can also choose Help—Support Web Page.

Igor Mailing List

The Igor mailing list is an Internet discussion list that provides a way for Igor Pro users to help one another
and to share solutions and ideas. WaveMetrics also uses the list to post information on the latest Igor devel-
opments. For information about subscribing and other details about the mailing list, please visit this web page:

http://www.wavemetrics.com/users/mailinglist.htm

IgorExchange

IgorExchange is a user-to-user support and collaboration web site sponsored by WaveMetrics but run by
and for Igor users. For information about IgorExchange, please visit this web page:

http://www.ilgorexchange.com

Telephone Support
You can reach us at 503-620-3001 from 9 AM to 5 PM Pacific time.

It is often very helpful if you can try things on your computer while speaking to us so, if possible, call us
from a phone near your computer.

FAX Support
You can reach our FAX machine any time at 503-620-6754.

II-15

http://www.igorexchange.com
http://www.wavemetrics.com/users/mailinglist.htm
http://www.wavemetrics.com/support/

Chapter II-1 — Getting Help

Help Shortcuts

Action
To activate Igor Tips

To get a contextual menu of
commonly-used actions

To activate the Igor Help
Browser

To jump to a topic in an Igor
help window

To jump back to recently visited
topics

To execute commands in an Igor
help window

To kill a help window

To insert a function or operation
template in a procedure
window or in the command line

To get help for a function or
operation from a procedure,
notebook or help window or
from the command line

Shortcut (Macintosh)
Press Option-Help.

Press Control and click in the body
of an Igor help window.

Press Help or click the Igor Help
Browser icon in the lower-right
corner of the command window.

Click a blue underlined topic link
in the help window.

Click the Go Back button at the
bottom of the help window or
press Command-B.

Press Command-Shift-B to hide the
current help window when going
back to a different help window.

Select the commands and press
Control-Return or Control-Enter.

Option-click the close button.

Type or select the name of an Igor
operation or function and Control-
click it or press Shift-Help.

Type or select the name of an Igor
operation or function and Control-
click it or press Shift-Option-Help.

Shortcut (Windows)

Right-click in an Igor help window.

Press F1 or click the Igor Help
Browser icon in the lower-right
corner of the command window.

Click a blue underlined topic link
in the help window.

Click the Go Back button at the
bottom of the help window or
press Ctrl+B.

Press Shift+Ctrl+B to hide the
current Igor help window when
going back to a different Igor help
window.

Select the commands and press
Ctrl+Enter.

Press Alt and click the close button.

Type or select the name of an Igor
operation or function and right-
click it or press Ctrl+F1.

Type or select the name of an Igor
operation or function and right-
click it or press Ctrl+Alt+F1.

II-16

Chapter

The Command Window

OVEIVIEW ..ottt ettt 18
Command Window EXample.........cccovviiiiiiiiiii s 18
The Command BUffer ... s 19
Command WINAOW Titlecccooviiiiiiiiiiiiii e 20
HISTOTY ATA oottt 20
History Carbon COPYcceueveiiurueieiiceteie ettt 20
Searching the Command WINAOWccooiiiiiieiiiicc s 21
Command WIindow FOrmats..........cccovviiiiiiiiiiiiii e 22
Getting Help from the Command Linecooorioiiiiiiiiiiece s 22

Command WINAOW SHOTTCULS ...coouviiiiiiii ettt ettt e et e e saa e s saate e s st e essasesssnseeessasesssssessnnes 23

Chapter II-2 — The Command Window

Overview

You can control Igor using menus and dialogs or using commands that you execute from the command
window. Some actions, for example waveform assignments, are much easier to perform by entering a com-
mand. Commands are also convenient for trying variations on a theme — you can modify and reexecute a
command very quickly. If you use Igor regularly, you may find yourself using commands more and more
for those operations that you frequently perform.

In addition to executing commands in the Command window, you can also execute commands in a note-
book, procedure or help window. These techniques are less commonly used than the command window.
See Notebooks as Worksheets on page III-5 for more information.

This chapter describes the command window and general techniques and shortcuts. See Chapter IV-1,
Working with Commands, for details on command usage and syntax.

The command window consists of a command line and a history area. When you enter commands in the
command line and press Return (Macintosh) or Enter (Windows and Macintosh), the commands are executed.
Then they are saved in the history area for you to review. If a command produces text output, that output
is also saved in the history area. A bullet character is prepended to command lines in the history so that you
can easily distinguish command lines from output lines.

N0ee Untitled

effake/N=100 wavel wavel wavez
. eSetScale x,0,2*Pi, wavel wave 1 waveZ m
History area wwavel=sinix) wave 1 =cos(x)
sDisplay wavel wave

wwave 2 =wave D wave | 5

7. — Help Browser button
appendToGraph waved | -

Command line

The Command window includes a help button just below the History area scroll bar. Clicking the button dis-
plays the Help Browser window. See Igor Help Browser on page II-6 for more details about the Help Browser.

The total length of a command on the command line must not exceed 400 characters.

There is no line continuation character in Igor. However, it is nearly always possible to break a single
command up into multiple lines.

Command Window Example

Here is a quick example designed to illustrate the power of commands and some of the shortcuts that make
working with commands easy.
1. Choose New Experiment from the File menu.
2. Execute the following command by typing in the command line and then pressing Return or Enter.
Make/N=100 wave0O; Display waveO
This displays a graph.
3. Press Command-J (Macintosh) or Ctrl+] (Windows).
This activates the command window.
4. Execute
SetScale x, 0, 2*PI, wave0O; wave0O = sin (x)
The graph shows the sine of x from 0 to 2.
Now we are going to see how to quickly retrieve, modify and reexecute a command.
5. Press the Up Arrow key.
This selects the command that we just executed.
6. Press Return or Enter.
This transfers the selection back into the command line.

I1-18

Chapter II-2 — The Command Window

7. Change the “2” to “4”.
The command line should now contain:
SetScale x, 0, 4*PI, wave(O; wave0 = sin(x)
8. Press Return or Enter to execute the modified command.
This shows the sine of x from 0 to 4n.
9. While pressing Option (Macintosh) or Alt (Windows), click the last command in the history.
This is another way to transfer a command from the history to the command line. The command line
should now contain:
SetScale x, 0, 4*PI, wave(O; wave(O = sin(x)
10. Press Command-K (Macintosh) or Ctrl+K (Windows).
This “kills” the contents of the command line.
Now let’s see how you can quickly reexecute a previously executed command.
11. With Command and Option (Macintosh) or Ctrl and Alt (Windows) pressed, click the second-to-last
command in the history.
This reexecutes the clicked command (the 2*PI command).
Repeat this step a number of times, clicking the second-to-last command each time. This will alternate
between the 2*PI command and the 4*PI command.
12. Execute
WaveStats wave0

Note that the WaveStats operation has printed its results in the history where you can review them. You
can also copy a number from the history to paste into a notebook or an annotation.

There is a summary of all command window shortcuts at the end of this chapter.

The Command Buffer

The command line shows a single line of the command buffer. Normally the command buffer is either
empty or contains just one line of text. However you can copy multiple lines of text from any window and
paste them in the command buffer. When more than one line is in the command buffer, little scroll controls
appear at the right end of the command line.

NeOe Untitled

esllake/N=100 wavel,wave | waves
#SetSeale x,0,2%Pi, wavel wavel wave?
owavel=sinx) wave 1 =cos(x)

eDisplay wavel wavel) |
wwave 2 =wave D wave |

The large scroll controls work
m —— with history area.

b

12 Browser button.
gppendToGraph wave2 |$ p

These little scroll controls indicate more than one line is in the command buffer.

You can clear the contents of the command buffer by choosing the Clear Command Buffer item in the Edit
menu or by pressing Command-K (Macintosh) or Ctrl+K (Windows).

When you invoke an operation from a typical Igor dialog, the dialog puts a command in the command buffer
and executes it. The command is then transferred to the history as if you had entered the command manually.

If an error occurs during the execution of a command, Igor leaves it in the command buffer so you can edit
and reexecute it. If you don’t want to fix the command, you should remove it from the command buffer by
pressing Command-K (Macintosh) or Ctrl+K (Windows).

Because the command buffer usually contains nothing or one command, we usually think of it as a single
line and use the term “command line”.

I1-19

Chapter II-2 — The Command Window

Command Window Title

The title of the command window is the name of the experiment that is currently loaded. When you first
start Igor or if you choose New from the File menu, the title of the experiment and therefore of the command
window is “Untitled”.

When you save the experiment to a file, Igor sets the name of the experiment to the file name minus the file
extension. If the file name is “An Experiment.pxp”, the experiment name is “An Experiment”. Igor displays
“An Experiment” as the command window title.

For use in procedures, the IgorInfo(1) function returns the name of the current experiment.

History Area
The history area is a repository for commands and results.

Text in the history area can not be edited but can be copied to the Clipboard or to the command line.
Copying text to the Clipboard is done in the normal manner. To copy a command from the history to the
command buffer, select the command in the history and press Return or Enter. An alternate method is to
press Option (Macintosh) or Alt (Windows) and click in the history area.

To make it easy to copy a command from the history to the command line, clicking a line in the history area
selects the entire line. You can still select just part of a line by clicking and dragging.

Up Arrow and Down Arrow move the selection range in the history up or down one line selecting an entire
line at a time. Since you normally want to select a line in the history to copy a command to the command line,
Up Arrow and Down Arrow skip over non-command lines. Left Arrow and Right Arrow move the insertion
point in the command line.

When you save an experiment, the contents of the history area are saved. The next time you load the exper-
iment the history will be intact. Some people have the impression that Igor recreates an experiment by reex-
ecuting the history. This is not correct. See How Experiments Are Loaded on page I1-38 for details.

If the history grows too large for your taste (a very large history can make loading and saving an experiment
time-consuming), you can remove lines by selecting them and choosing Cut or Clear from the Edit menu.
You can also use the Miscellaneous Settings dialog (Misc menu) to automatically trim the history.

History Carbon Copy

This feature is expected to be of interest only in rare cases for advanced Igor programmers such as Bela
Farago who requested it.

You can designate a notebook to be a "carbon copy" of the history area by creating a plain text or formatted
notebook and setting its window name, via Windows->Window Control, to HistoryCarbonCopy. If the His-
toryCarbonCopy notebook exists, Igor inserts history text in the notebook as well as in the history. How-
ever, if a command is initiated from the HistoryCarbonCopy notebook (see Notebooks as Worksheets on
page I11-5), Igor suspends sending history text to that notebook during the execution of the command.

If you rename the notebook to something other than HistoryCarbonCopy, Igor will cease sending history
text to it. If you later rename it back to HistoryCarbonCopy, Igor will resume sending history text to it.

The history trimming feature accessed via the Miscellaneous Settings dialog does not apply to the History-
CarbonCopy notebook. You must trim it yourself. Notebooks are limited to 16 million paragraphs.

When using a formatted notebook as the history carbon copy, you can control the formatting of commands
and results by creating notebook rulers named Command and Result. When Igor sends text to the history
carbon copy notebook, it always applies the Command ruler to commands. It applies the Result ruler to
results if the current ruler is Normal, Command or Result. You must create the Command and Result rulers
if you want Igor to use them when sending text to the history carbon copy.

I1-20

Chapter II-2 — The Command Window

This function creates a formatted history carbon copy notebook with the Command and Result rulers used
automatically by Igor as well as an Error ruler which we will use for our custom error messages:

Function CreateHistoryCarbonCopy ()
NewNotebook /F=1 /N=HistoryCarbonCopy /W=(50,50,715,590)

Notebook HistoryCarbonCopy backRGB=(0,0,0)// Set background to black
Notebook HistoryCarbonCopy showRuler=0

// Define ruler to govern commands.

// Igor will automatically apply this to commands sent to history carbon copy.

Notebook HistoryCarbonCopy newRuler=Command,
rulerDefaults={"Geneva", 10,0, (65535,65535,0) }

// Define ruler to govern results.

// Igor will automatically apply this to results sent to history carbon copy.

Notebook HistoryCarbonCopy newRuler=Result,
rulerDefaults={"Geneva",10,0, (0,65535,0) }

// Define ruler to govern user-generated error messages.
// We will apply this ruler to error messages that we send
// to history carbon copy via Print commands.
Notebook HistoryCarbonCopy newRuler=Error,
rulerDefaults={"Geneva",10,0, (65535,0,0) }
End

If the current ruler is not Normal, Command or Result, it is assumed to be a custom ruler that you want to
use for special messages sent to the history using the Print operation. In this case, Igor does not apply the
Result ruler but rather allows your custom ruler to remain in effect.

This function sends an error message to the history using the custom Error ruler in the history carbon copy
notebook:

Function PrintErrorMessage (message)
String message

Notebook HistoryCarbonCopy, ruler=Error
Print message

// Set ruler back to Result so that Igor's automatic use of the Command
// and Result rulers will take effect for subsequent commands.
Notebook HistoryCarbonCopy, ruler=Result

End

XOP programmers can use the XOPNotice3 XOPSupport routine to control the color of text sent to the
History Carbon Copy notebook.

Searching the Command Window

You can search the command line or the history by choosing Find from the Edit menu or by using the key-
board shortcuts as shown in the Edit menu. Searching the command line is most often used to modify a pre-
viously executed command before reexecuting it. For example, you might want to replace each instance of a
particular wave name with another wave name.

If there is an active selection in the history, Find searches the history. Otherwise it searches the command line.
To be sure that Find will search the area that you want, you can click in that area before starting the search.

I1-21

Chapter II-2 — The Command Window

Command Window Formats

You can change the text format used for the command line. For example, you might prefer larger type. To do
this, click in the command line and then choose Set Text Format from the Command Buffer submenu of the
Misc menu. To set the text format for the history area, click in the history area and then choose Set Text Format
from the History Area submenu of the Misc menu. To do this, the history area must have some text in it.

You can set other properties, such as background color, by choosing Document Settings from the Command
Buffer or History Area submenus. The Document Settings dialog also sets the header and footer used when
printing the history.

When you change the text format or document settings, you are changing the current experiment only. You
may want to capture the new format and settings as a preference for new experiments. To do this, choose
Capture Prefs from the Command Buffer and History Area submenus.

Getting Help from the Command Line

When working with the command line, you might need help in formulating a command. There are short-
cuts that allow you to insert a template, view help, or find the definition of a user function.

To insert a template, type the name of the operation or function and then press Shift-Help (Macintosh) or
Ctrl+F1 (Windows).

To view help or to view the definition of a user function, type the name of the operation or function and
then press Shift-Option-Help (Macintosh) or Ctrl+Alt+F1 (Windows).

You can also insert a template or get help by Control-clicking (Macintosh) or right-clicking (Windows).
To view text window keyboard navigation shortcuts, see Text Window Navigation on page II-66.

This table may help you remember what the various keyboard shortcuts do.

Keyboard Shortcut What It Does

Macintosh Windows

Press Help Press F1 Displays help browser window

Press Shift-Help Press Ctrl+F1 Inserts template for selected operation or function

Press Shift-Option-Help Press Ctrl+Alt+F1 Displays help for selected operation or function

I1-22

Chapter II-2 — The Command Window

Command Window Shortcuts

Action Shortcut (Macintosh) Shortcut (Windows)

To activate the command Press Command-]. Press Ctrl+].

window

To clear the command buffer Press Command-K. Press Ctrl+K.

To get a contextual menu of Press Control and click the history Right-click the history area or
commonly-used actions area or command line command line

To copy a line from the history to Click the line and press Return or
the command buffer Enter.

Press Option and click the line.

To reexecute a line from the Click the line and press Return or
history enter twice

Press Command-Option and click
the line.

To find a recently executed Press the Up or Down Arrow keys.
command in the history

To find text in the history Click in the history area and press
Command-F.

To find text in the command line Click in the command line and press
Command-F.

To get a template Type the name of an operation or
function and press Shift-Help.

To get help or view the definition Type the name of an operation or

of a user function function and press Shift-Option-Help.

Click the line and press Enter.
Press Alt and click the line.

Click the line and press Ctrl+Enter
Press Ctrl+Alt and click the line.

Press the Up or Down Arrow keys.

Click in the history area and press
Ctrl+F.

Click in the command line and
press Ctrl+F.

Type the name of an operation or
function and press Ctrl+F1.

Type the name of an operation or
function and press Ctrl+Alt+F1.

I1-23

Chapter II-2 — The Command Window

I1-24

Chapter

Experiments, Files and Folders

EXPOIIINEINES .ottt 27
Saving EXPOIIMENESc.oiviiiieiiiieiie e 27
Saving as a Packed Experiment File...........cccoooiiiiiiiiiiicec s 27
Saving as an Unpacked Experiment File...........cccooooiiiiiiiiiiicc e 28
Opening EXPeriments.........occoiiieiiiiiiii e 30
Merging EXPerimentS........ccccoiiiiiiieiiiiieieecee e 30
Reverting an EXPerimentcccoooiioiiiiiiii e 31
NeW EXPOIIMENTES......c.ovoioiiiii et 31
Saving an Experiment as Stationery (Macintosh) ... 32
Saving an Experiment as a Template (WindOws)cccooeuiiiiiiiiiiiiniic s 32
Browsing EXPerimentsccoevoiiiiiiiiiiii e 33
SYMDBOLC Pathis ... 33
Symbolic Path EXaMPIe ...ttt 33
Automatically Created Paths ..o 35
New Symbolic Path Dialogcccouieiiiiiiiic s 35
Symbolic Path Status Dialogcccceeieiiieieiicc s 35
Kill Paths Dialogc.cuoviiieiiicieice ettt e 36
References to Files and FOLAETS...........ccoiiiiiiiiiiiec s 36
Avoiding Shared Igor Binary Files............cccoiiiiiiiiiic e 37
Adopting Notebook and Procedure Files ... 37
AOPt AlL oo 37
How Experiments Are Loaded ... s 38
Experiment Recreation Procedures............cooviviiiiiininininiii e 38
Experiment Initialization COmMmandsccccovviiiiiniiiiiiii e 39
Errors During Experiment Load..........ccccoviiiiiiiiiiiiiirs e 39
How Igor Searches for Missing FOLAETS ..o 41
Folder Search TeChNIQUES..........ccuviiiririiiiii e 41

How Experiments Are SAVed...........coocuiiiiiiiiiice et 42
Experiment Save EITOTS ...t 43
Macintosh File TroubleshOOting.............coveiiiiicieiiccc e 43
Windows File TroubleShOOting ..ot 43

SPCIAl FOIARTS ...ttt s bbbttt 44
IZOT PIO FOIART ...ttt 45
IZOT PIO USET FileS ...ttt 45
Igor Help Files FOLARTcuviiii st 45
Igor Extensions FOLART ...t 45
Igor Procedures FOLA@T ...t 46
User Procedures FOIAeT ...t 46
WaveMetrics Procedures FOLeT ... 46
Activating Additional WaveMetrics Files.........coooiiioiiiii 46
Activating Other Files ...t 47
Activating Files in @ Multi-User SCENATIOcovcueveiiiicieiiicc s 47
Igor File-HANAIINGocvveieiie et 47

Open or Load File DIialog ...ttt 47

Chapter II-3 — Experiments, Files and Folders

Recent Files and Experiments.........c.cccccoeuvvveeveininincncnce.
Desktop Drag and Drop.......c.ccccevveevinicnincniinincncnne.
Problems With File Names Using Non-ASCII Characters

II-26

Chapter 1I-3 — Experiments, Files and Folders

Experiments

An experiment is a collection of Igor objects, including waves, variables, graphs, tables, page layouts, note-
books, control panels and procedures. When you create or modify one of these objects you are modifying
the current experiment.

You can save the current experiment by choosing File—Save Experiment. You can open an experiment by
double-clicking its icon on the desktop or choosing File—+Open Experiment.

Saving Experiments

There are two formats for saving an experiment on disk:
* As a packed experiment file. A packed experiment file has the extension .pxp.

® As an experiment file and an experiment folder (unpacked format). An unpacked experiment file
has the extension .uxp.

The packed format is recommended for most purposes. The unpacked format is useful for experiments that
include very large numbers of waves (thousands or more).

Extensions are not strictly necessary on Macintosh but they are recommended for ease of file sharing and
future compatibility.

Saving as a Packed Experiment File

In the packed experiment file, all of the data for the experiment is stored in one file. This saves space on disk
and makes it easier to copy experiments from one disk to another. For most work, we recommend that you use
the packed experiment file format.

The folder containing the packed experiment file is called the home folder.

The main utility of this format is that it is faster for experiments that contain very large numbers of waves (thou-
sands or more). However the unpacked format is more fragile and thus is not recommended for routine use.

To save a new experiment in the packed format, choose Save Experiment from the File menu. Igor displays
the following dialog:

i%j IPhoto

Windows Macintosh
o Save experiment as:
Save experiment as: B
Save in: |2 Igor Pro Folder j &= o B Save As: Experiment #1.pxp E]
(DAL Bitmaps [DMiscellaneous e — =
(E2Examplas [EMore Extersions) = |m Igor Pro Folder 3]
\DIFCL Procedures (DMore Help Files | PG m - (7 Examples ;
[)Igar Extensions [SProduct Demos AW| oso) . Font Book IFDL: . ‘
[E3Igor Help Files [DTechnical Notes L= Applicat...ac 05 9) " [Graphicconverter 1 = Facecures i
[©1gor Procedures [ChUser Procedures # Library ! Cab [1gor Extens.\ons !
(CaLearning tids [C)WaveMetrics Procedures i System " T ical L3 Igor Help Files !
I Manual System Folder P B iChat L: Igor Pro
lx= User Gui...ormation [I iDVD 3 b |7 1gor Procedures L
2 Users ["J @l | [Learning Aids)
File name: [Experiment #1 mq - & Image Capture [% Manual L
¥ iMovie L_,. Miscellaneous [
Save as type: ‘Packed Experiment File (*pxp) ﬂ Cancel | L-:I Installers) [F More Ex[ens.iong [
Packed Experiment File (“pxg) % Internet Connect [_,.. More Help Files L
Unpacked Experiment File (*.uxp) 7 Product Demos [
ReadMe.ihf

Packed Experiment Template (* pxf) <
e
Unpacked Experiment Template (*.uxt) T"urlgi % [Technical Notes N
. . _ e et o o T [userProcedures > |7
Select Packed Experiment File. € Kl
. 2B v Packed Experiment File . 3
You can select the default using Unpacked Experiment File
the Experiment section of the (] Save as Stationery ETTEEEIEERERSOnT
Miscellaneous Settings dialog in
the Misc menu. ({ New Folder) (cancel)

4

The next illustration shows the icon for a packed experiment file.

I1-27

Chapter II-3 — Experiments, Files and Folders

Contains the startup commands — ———Also contains data for waves, variables,
that Igor executes to recreate history, procedures, notebooks,

the experiment, including all) pictures and other items.
experiment windows. Experiment #1.pxp

Saving as an Unpacked Experiment File

In the unpacked format, an experiment is saved as an experiment file and an experiment folder. The file
contains instructions that Igor uses to recreate the experiment while the folder contains files from which
Igor loads data. The experiment folder is also called the home folder.

To save a new experiment in the unpacked format, choose Save Experiment from the File menu. Igor dis-
plays the following dialog:

Macintosh Windows
Save experiment as:)
Save experiment as:
Save As: Experiment #2.uxp E] Save in; ‘_HQDFPIU Folder j £ B
—_— [DAl Bitmaps D Miscellaneous
r = = r
=L E e b i =) (C)Examples [CaMore Extensions
[Aplicat..acos 9 * - = ucm:mwumm ~ [Examples r g;FDL:r:ceQures gl\Pr‘\org HinDFlles
. iCal jor Extensions roduct Demos
= ;Ik;:!: : T ical t :FS:;::::&E: : dlgor Help Files [ETechnical Notes
v . 2 iChat L~ 19 X ‘ I=1gor Procedures ElUser Procedures
= System Folder) iDVD 3 [L'; gor Help Files IZLearning Aids 2WaveMetrics Procedures
s User Gui...ormation | LJ B L Igor Pro CManual
X Users » | c |7 1gor Procedures L
o : Caﬁ_é apture [7 Learning Aids]
2 IMovie ey
[nstallers) [:_.,_ Manual L File name: |Exparimem#2.uxp
I c . [Miscellaneous P
nternet Conneci = .
= iPhoto [___,._ More Extensions L Sawve as type: |Unpa:ked Expetiment File (*.uxp) ﬂ Cancel |
isync . L_-—_ More Help Files " Packed Experiment File (* pxp)
4 |7 Product Demos ra Unpacked Experiment File (% uxp) [}s
Y = TTunes Y £ peadMe.ihf v Packed Experiment Termplate (* pd)
€ = R Unpacked Experiment Template (*uxt)
—— Packed Experiment File
208 v Unpacked Experiment File
" Save as Stationery Add/Fix File Extension Select Unpacked Experiment File.

(" New Folder) (Cancel) @
A4
Once you click the Save button with Packed deselected, Igor presents a second dialog to allow you to create
the experiment folder:

Macintosh

Choose a Folder

Create a folder for files

[«]»]) 'il[ﬂ]] ' “Jlgor Pro Folder |:‘]

7 FonT BOoK ~ |7 Examples L
|7 GraphicConverter |FDL Procedures |
iCab Igor Extensions L
5 ical |_7 Igor Help Files L
€& iChat m {44 1gor Pro
~ IDVD 3 " ' Igor Procedures

= Learning Aids
%2l Image Capture

[
[
Manual L
=) iMovie Miscellaneous L
| Installers More Extensions |
Internet Connect Mare Help Files P e
1% iPhoto Product Demos =
iSync e M

[= = IS

Folder: | Experiment #2 Folder Click to create the

experiment folder.
(" New Folder) (" Cancel) @
i

I1-28

Chapter 1I-3 — Experiments, Files and Folders

Windows

Create a folder for files

Fath ta folder: |b:\Pngram Files\wWanehetricshlgar Fro FoldenExperiment #2 Falder

. Concol ’Tl i Click to create the
rowse ance | experiment folder.

The next illustration shows the icons used with an unpacked experiment and explains where things are stored.

Macintosh Windows

; Contains the startup commands that Igor AL

Q‘? executes to recreate the experiment, “L"‘

including all experiment windows. ;
Experiment #2.uxp 9 P Experiment
. . . #Z2.Uxp
. Also contains data pictures and other items.

(mi=R _ Contains files for waves, variables, history, r—J

Experiment #2 Folder procedures and notebooks. Experimeant

#2 Folder
v Y
#

806 SomnmentAZEQN, - _/ C:\Program Files\Wave g@
BN — P~ 1. 1 11
l it l [" = DI'] [ﬁ'l Q- local disks Fle Edit View Favorites Took |2 &
misceH:mous Notebookd history miscelaneous Motebookd
. -
ProcD Procedure variables
it it Hfiy
01101 01101 01101 .
i i i Froco Procedure variables
wavel.ibw wave L.ibw wavel.ibw
Z
wiaval, b e 1ibw e 2 i

You normally have no need to deal with the files inside the experiment folder. Igor automatically writes
them when you save an experiment and reads them when you open an experiment.

If the experiment includes data folders (see Chapter II-8, Data Folders) other than the root data folder, then
Igor will create one subfolder in the experiment folder for each data folder in the experiment. The experi-
ment shown in the illustration above contains no data folders other than root.

Note that there is one file for each wave. These are Igor Binary data files and store the wave data in a compact
format. For the benefit of programmers, the Igor Binary file format is documented in Igor Technical Note #003.

The “procedure” file holds the text in the experiment’s built-in procedure window. In this example, the
experiment has an additional procedure window called Proc0 and a notebook.

The “variables” file stores the experiment’s numeric and string variables in a binary format.

The advantages of the unpacked experiment format are:

¢ Igor can save the experiment faster because it does not need to update files for waves, procedures
or notebooks that have not changed.

* You can share files stored in one experiment with another experiment. However, sharing files can
cause problems when you move an experiment to another disk. See References to Files and Folders
on page 1I-36 for an explanation.

The disadvantages of the unpacked experiment format are:

* It takes more disk space, especially for experiments that have a lot of small waves.

I1-29

Chapter II-3 — Experiments, Files and Folders

* Youneed to keep the experiment file and folder together when you move the experiment to another disk.

If you create an experiment with a very large number of waves, you might find it convenient to save it as
an unpacked experiment while you are actively working with it and later do a Save Experiment As using
the packed format for archiving.

Opening Experiments

You can open an experiment stored on disk by choosing Open Experiment from the File menu. You can first
save your current experiment if it has been modified. Then Igor presents the standard Open File dialog.

Windows Macintosh
Select an Experiment
Select an Experiment
Select an Experiment
i =3 Curve Fitlin x| &= £ EAv
Lt i | 9 J Enable: = All Igor Experiment Files 5 !
B Constraint Demo.pxp — = = — <
4 = il ~ Curve Fittin v
B Fit Line Betweer CUPSOrs.pxp ——— :] L 9)
B Global Fit Demo.pxp [~ Examples » = About Examples.txt @ Constraint Demo.pxp
B MUlt-peak. fitpxp " IFDL Procedures P [Analysis 3 & Fit Line Be...rsors.pxp
B MUt-variate Fit Demo.pxp [7 1gor Extensions r W2
= Igor Help Files P Feature Demos B Multi-peak fit.pxp
Li Igor Pro _: Craphin...chnigues F B Multi-vari. .Demo.pxp

Igor Procedures
Learning Aids

A B [~ Imaging
7} L
| Manual P
7 L
7} L
f p

= Movies & Audio
~ Programming
~ Sample Graphs

Miscellaneous

’
B & Global Fit Demo.pxp
[
’
}
)
’
)
)
;

More Extensions 1 Technigues
Files of type: |Experimem Files (*.uxp:* pxp) j Cancel Mare Heln Files . T“”"”;L'ﬂl**; ******** - T

(" New Folder) (" Cancel) Open

alr

4

When you select an experiment and click the Open button, Igor loads the experiment including all waves, vari-
ables, graphs, tables, page layouts, notebooks, procedures and other objects that constitute the experiment.

Some people mistakenly believe that Igor recreates an experiment by reexecuting its history. See How
Experiments Are Loaded on page II-38 for the real story.

Merging Experiments

Normally Igor closes the currently opened experiment before opening a new one. But it is possible to merge
the contents of an experiment file into the current experiment. This is useful, for example, if you want to
create a page layout that contains graphs from two or more experiments. To do this, press Option (Macin-
tosh) or Alt (Windows) while choosing Open Experiment from the File menu.

Note: Merging experiments is an advanced feature that has some inherent problems and should be used
judiciously. If you are just learning to use Igor Pro, you should avoid merging experiments until
you have become proficient. You may want to skim the rest of this section or skip it entirely. It
assumes a high level of familiarity with Igor.

The first problem is that the merge operation creates a copy of data and other objects (e.g., graphs, proce-
dure files, notebooks) stored in a packed experiment file. Whenever you create a copy there is a possibility
that copies will diverge, creating confusion about which is the “real” data or object. One way to avoid this
problem is to discard the merged experiment after it has served its purpose.

The second problem has to do with Igor’s use of names to reference all kinds of data, procedures and other
objects. When you merge experiment B into experiment A, there is a possibility of name conflicts.

Igor prevents name conflicts for data (waves, numeric variables, string variables) by creating a new data
folder to contain the data from experiment B. The new data folder is created inside the current data folder
of the current experiment (experiment A in this case).

For other globally named objects, including graphs, tables, page layouts, control panels, notebooks, symbolic
paths, page setups and pictures, Igor renames objects from experiment B if necessary to avoid a name conflict.

I1-30

Chapter 1I-3 — Experiments, Files and Folders

During the merge experiment operation, Igor looks for conflicts between target windows, between window
recreation macros and between a target window and a recreation macro. If any such conflict is found, the
window or window macro from experiment B is renamed.

Because page layouts reference graphs, tables and pictures by name, renaming any of these objects may
affect a page layout. The merge experiment operation handles this problem for page layouts that are open
in experiment B. It does not handle the problem for page layout recreation macros in experiment B that have
no corresponding open window.

If there are name conflicts in procedures other than window recreation macros, Igor will flag an error when
it compiles procedures after finishing the merge experiment operation. You will have to manually resolve
the name conflict by removing or renaming conflicting procedures.

Procedure windows have titles but do not have standard Igor names. The merge experiment operation
makes no attempt to retitle procedure windows that have the same title.

The contents of the main procedure window from experiment B are appended to the contents of the main
procedure window for experiment A.

During a normal experiment open operation, Igor executes experiment initialization commands. This is not
done during an experiment merge.

Each experiment contains a default font setting that affects graphs and page layouts. When you do an exper-
iment merge, the default font setting from experiment B is ignored, leaving the default font setting for
experiment A intact. This may affect the appearance of graphs and layouts in experiment B.

The history from experiment B is not merged into experiment A. Instead, a message about the experiment
merge process is added to the history area.

The system variables (K0...K19) from experiment B are ignored and not merged into experiment A.

Although the merge experiment operation handles the most common name conflict problems, there are a
number problems that it can not handle. For example, a procedure, dependency formula or a control from
experiment B that references data using a full path may not work as expected because the data from exper-
iment B is loaded into a new data folder during the merge. Another example is a procedure that references
a window, symbolic path or picture that is renamed by the merge operation because of a name conflict.
There are undoubtedly many other situations where name conflicts could cause unexpected behavior.

Reverting an Experiment

If you choose Revert Experiment from the File menu, Igor asks if you're sure that you want to discard
changes to the current experiment. If you answer Yes, Igor reloads the current experiment from disk, restor-
ing it to the state it was in when you last saved it.

New Experiments

If you choose New from the File menu, Igor first asks if you want to save the current experiment if it was
modified since you last saved it. Then Igor creates a new, empty experiment. The new experiment has no
experiment file until you save it.

By default, when you create a new experiment, Igor automatically creates a new, empty table. This is con-
venient if you generally start working by entering data manually. However, in Igor data can exist in
memory without being displayed in a table. If you wish, you can turn automatic table creation off using the
Experiment Settings category of the Miscellaneous Settings dialog (Misc menu).

I1-31

Chapter II-3 — Experiments, Files and Folders

Saving an Experiment as Stationery (Macintosh)

On a Macintosh, stationery provides a way to customize the initial contents of a new experiment. To make
a stationery experiment, start by creating a prototype experiment with whatever waves, variables, proce-
dures or other objects you would like in a new experiment. Then, using the Save Experiment As item in the
File menu, save the experiment as stationery. You can convert an existing experiment file to stationery using
the Finder by setting the Stationery Pad checkbox in the Get Info dialog. You can also convert an existing
experiment file into stationery by changing the extension (“.pxp” to “.pxt” or “.uxp” to “.uxt”).

Save experiment as: © O () Experiment #1.pxp Info
¥ General.
Save As: Experiment #1.pxt E] e = #1
] Experiment #1.pxp
‘— @ 3 Igor ProlEeiden [~] Kind: Igor Pro Packed Experiment

Size: 156 KB on disk (157,510 bytes)
Where: Macintosh HD:Users:Igor:
Created: Thursday, December 18, 2003 11:
37 AM

Medified: Thursday, December 18, 2003 11
37 AM

[OrapiTCC e e
iCab
T ical
% IChat

| Examples
~ IFDL Procedures
 Igor Extensions

|4 Applications »
| % Applicat...ac 05 9) ¢
Library »

!
X !
System 4 [j iDvD 3) " lgor Help Files |
system Falder > [g | b oo e { Select the “Stationery # stationery Pad
s User Gui...ormation P |7 1gor Procedures 2 2 B —
| 2 Image Capture .) a Pad” checkbox in the OJ Locked
~ L& Users L ¥ iMovie 7 Learning Aids ! i Finder's “Get Info” =
[3 installers p | EF Manual i inder’s “Get Info b Name & Extension:
Internet Connect [Miscellaneous » window ¥ Open with
1 9 U 1 . : =
= iPhoto t :ore E'xﬁe”:"ons : {a& 1gor Pro (defaulty \:]
- More Help Files
Sync .) Use this application te epen all
Tunes : L_" Product Demos = documents like this.
_ . Y #5 ReadMe.jhf _ b Change All
€ : R Chang -
B Preview:
Format: | Packed Experiment File % From Igor’s “Save Experiment » Ownership & Permissions:
L — as” dialog, select the Save as (SO
ESave as Stationery Add/Fix File Extension .
Stationery box.
(New Folder) (Cancel) @
4

When you open a stationery experiment, Igor opens it normally but leaves it Untitled and disassociates it
from the stationery experiment file. This leaves you with a new experiment based on your prototype. When
you save the untitled experiment, Igor creates a new experiment file.

If you find that you want to modify the stationery experiment, first convert it back to a regular, nonstationery
experiment. You can do this by deselecting the Stationery Pad checkbox in the Finder, changing the file name
extension to “.pxp” or “.uxp”, or by opening the experiment in Igor and doing a Save Experiment As with the
Save as Stationery box deselected. Now, modify the experiment and then save it as stationery again.

Saving an Experiment as a Template (Windows)

Under Windows, a template file provides a way to customize the initial contents of a new experiment. The
Save Experiment dialog saves the experiment as a template when you choose Packed Experiment Template
or Unpacked Experiment Template from the “Save as type” menu. A template experiment has the extension
“.pxt” (packed) or “.uxt” (unpacked). You can convert an existing experiment file into a template file by
changing the extension (“.pxp” to “.pxt” or “.uxp” to “.uxt”).

I1-32

Chapter 1I-3 — Experiments, Files and Folders

Save experiment as:

Sawe in: | MNew Folder (2) ﬂ ek B

IExperiment #2 Folder
EBExperiment #2.uxp

File name: ‘Experimeﬂt#] uxg .‘FE‘] —»
[

Save as type: ‘Unpackad Experiment File (*uxg) j Cancel |

Packed Experiment Fils (*pxg) Experiment Experiment
Unpacked Experimant File {* wp) #lpxp #1pxt
Packed Experiment Template (* pxf) [}S
Unpacked Experiment Template (*.uxt)
From Igor's Save Experiment As dialog, Or, change the file name
select Packed or Unpacked Experiment extension on the desktop.

When you open a template experiment, Igor opens it normally but leaves it Untitled and disassociates it
from the template experiment file. This leaves you with a new experiment based on your prototype. When
you save the untitled experiment, Igor creates a new experiment file.

If you find that you want to modify the template experiment, first convert it back to a regular experiment
by changing the extension (“.pxt” to “.pxp” or “.uxt” to “.uxp”). Now modify the experiment and then save
it as a template again.

Browsing Experiments

You can see what data exists in the current experiment as well as experiments saved on disk using the Data
Browser. To open the browser, choose Data—Data Browser. The Data Browser is described in Chapter II-8,
Data Folders.

Symbolic Paths

A symbolic path is an Igor object that associates a short name with a folder on a disk drive. You can use this
short name instead of a full path to specify a folder when you load, open or save a file. A full path is a com-
plete specification of the location of a folder on a disk drive, as illustrated in the next section.

Igor creates some symbolic paths automatically and you can also create symbolic paths.

Symbolic Path Example

This example is intended to illustrate why you should use symbolic paths and how to use them. We will
assume that you have a folder full of text files containing data that you want to graph in Igor and that the
organization of your hard disk is as follows:

Macintosh

806 =i Macintosh HD =)

E] | Qr local disks

] Name
|~ Applications
» [Applications (Mac OS 9)
> | ® Library
B |0 System
b | & System Folder
[user Guides And Information
A ¥ |k Users
v [_,: Igor
» |7 Data Acq
v | Dara Files
B ====—— The full path to this folder is:
» [June Data
» [MayData
>

1 of 17 selected, 5.93 GB available

>

4lr

Macintosh HD:Users:Igor:Data Files:July Data

N

I1-33

Chapter II-3 — Experiments, Files and Folders

Windows
./ C:\Documents and Settings\Owner\My Documents\Data Files\July Data g@
File Edit “iew Favorites Tools Help "
QBack -~ o) T | O Search | * Folders | ¥ @ .:]
Folders X ||2]Aun 1dat
@ sy alonz
= () My Documents -)
= 3 Data Files —
5 July Data —— The full path to this folder is:
=) June Data C:\Documents and Settings\Owner\My Documents\Data Files\July Data
[May Data
[0 Test Exp Folder
& My Music
(E) My Pictures
B My videos
= My Computer ™
<] 5]

To create a symbolic path for the folder, choose New Path from the Misc menu. This leads to the New Sym-

bolic Path dialog.

The NewPath command created by the dialog makes a symbolic path named Data which represents “Mac-
intosh HD:Users:Igor:Data Files:July Data:” (Macintosh) or “C:\Documents and Settings\ Owner\ My Doc-

uments\ Data Files\ July Data\"” (Windows).

Note that on Windows, the NewPath command generated by the dialog has a Macintosh-style path using
colons to separate the folder levels. The command can also accept Windows-style paths with backslash char-
acters, but this can cause problems and is not recommended. For details, see Path Separators on page I11-394.

Macintosh Select to redefine an existing symbolic path.

New Symbolic Path

Mame: Data) Overwrite

Enter a short name for the path.
Leads to another dialog where ——— path...)

e
yOU can ChOOSe a folder. Macintosh HD:Users:lgor:Data Files:July Data:

NewPath Data "Macintosh HD:Users:|gor:Data Files:duly Data:"

€ Doit) (Tocmdline) (Toclip) (Help) (Cancel)

Windows Note that Igor generates a command using Macintosh style
with colons separating folder levels.

New Symbolic Path

Mame: |Datal [Cwenite

Path... | C:Docurments and Settings: OwnerMy Docurnents:Data Files: July Data:

| MewFath Data "C:Documents and Settings: Owner:My Documents:Data Files:July Data:"

Dokt | ToCmdline | TaClip | Help | Cancel |

Once you've executed this, you can select the Data path in dialogs where you need to choose a folder.

For example, the Load Waves dialog would look like this:

I1-34

Chapter 1I-3 — Experiments, Files and Folders

The “Data” symbolic path appears Load Waves

in this !lst of paths: When you path File Type: (Defimited Text _[8)

select it, you SpeCIfy that you _none_ I Make table ¥ Double precision
want to load a file from the “Hard home Read wave names] Auto name & go

Igor -
Data _ILoad from clipboard

] Overwrite existing waves

] Load columns into matrix

When you CliCk, Igor asks you to Path: Macintosh HD:Users:Igor:Data Files:

choose a file from the folder. " File...) June Data:Run 1.dat

. Loaddave /1/0/M/F=Oata/K=8 *:dune Data:Run 1.dat"
Igor uses the symbolic path name as —

a shorthand reference to the folder. € Dot) (ToCmdline) (ToClip) (Tweaks..) (Help) (Cancel)

You can also use the symbolic path in commands that you execute from the command line or from Igor pro-
cedures. Typically this is done using a /P=<symbolic path name> flag.

Automatically Created Paths
Igor automatically creates a symbolic path named Igor which refers to the folder containing the Igor appli-
cation. This is mainly of interest if you write Igor procedures.

Igor also automatically creates the home symbolic path. This path refers to the home folder for the current
experiment. For unpacked experiments, this is the experiment folder. For packed experiments, this is the
folder containing the experiment file. For new experiments that have never been saved, home is undefined.

Finally, Igor automatically creates a symbolic path if you do something that causes the current experiment
to reference a file not stored as part of the experiment. This happens when you:

* Load an Igor Binary file from another experiment into the current experiment

¢ Open a notebook file not stored with the current experiment

* Open a procedure file not stored with the current experiment

Creating these paths makes it easier for Igor to find the referenced files if they are renamed or moved. See
References to Files and Folders on page 1I-36 for more information.

New Symbolic Path Dialog

To access the New Symbolic Path dialog, choose New Path from the Misc menu. The dialog is illustrated in
the example Symbolic Path Example on page 11-33.

Symbolic Path Status Dialog

The Symbolic Path Status dialog shows you what paths exist in the current experiment. To invoke it, choose
Path Status from the Misc menu.

I1-35

Chapter II-3 — Experiments, Files and Folders

Lists the symbolic paths in “w” stands for “wave”
the current experiment. “p” stands for “procedure file”

“n” stands for “notebook”

Symbolic Path %tatus

| Symbaolic Path Objects from Path

hone w: wawve 3

Igor w: wave2 .

Testing w: wavel Shows the objects that are
w: wave0 associated with files from the
n: Notebook0 selected path. This includes
p: Test Procedures waves, notebooks and

procedure windows.
Path is:

Macintosh HD:Users:Igor:Testing: Shows the full path for the

selected symbolic path.

(" Hel p 3

(Done)

If you click <none>, the Objects from Path list shows objects that are not associated with any of the symbolic
paths. This includes waves that have not yet been saved to disk and waves, notebooks and procedure files
stored in packed experiment files.

Kill Paths Dialog

The Kill Symbolic Paths dialog removes from the current experiment symbolic paths that you no longer
need. Killing a path does nothing to the folder referenced by the symbolic path. It just deletes the symbolic
path name from Igor’s list of symbolic paths. To invoke the dialog, choose Kill Paths from the Misc menu.

Kill Symbolic Paths

Symbolic paths not in use

. Filters
Select the symbolic — pata1
paths to be killed. Data2

Select to kill all of the
listed symbolic paths.

Shift-click to select 1 Kill all paths not in use

multiple paths.

KillPath Datal

EDoit) (ToCmdlLine) (ToClip) (Help) (Cancel)

A symbolic path is in use — and Igor won't let you kill it — if the experiment contains a wave, notebook
window or procedure window linked to a file in the folder the symbolic path points to.

References to Files and Folders

An experiment can reference files that are not stored with the experiment. This happens when you load an
Igor Binary data file which is stored with a different experiment or is not stored with any experiment. It also
happens when you open a notebook or procedure file that is not stored with the current experiment. We
say the current experiment is sharing the wave, notebook or procedure file.

For example, imagine that you open an existing text file as a notebook and then save the experiment. The
data for this notebook is in the text file somewhere on your hard disk. It is not stored in the experiment.
What is stored in the experiment is a reference to that file. Specifically, the experiment file contains a
command that will reopen the notebook file when you next reopen the experiment.

Note: When an experiment refers to a file that is not stored as part of the experiment, there is a potential
problem. If you copy the experiment to a CD to take it to another computer, for example, the
experiment file on the CD will contain a reference to a file on your hard disk. If you open the
experiment on the other computer, Igor will ask you to find the referenced file. If you have
forgotten to also copy the referenced file to the other computer, Igor will not be able to completely
recreate the experiment.

II-36

Chapter 1I-3 — Experiments, Files and Folders

For this reason, we recommend that you use references only when necessary and that you be aware of this
potential problem.

If you transfer files between platforms file references can be particularly troublesome. See Experiments and
Paths on page III-391.

Avoiding Shared Igor Binary Files

When you load a wave from an Igor Binary file stored in another experiment, you need to decide if you
want to share the wave with the other experiment or copy it to the new experiment. Sharing creates a refer-
ence from the current experiment to the wave’s file and this reference can cause the problem noted above.
Therefore, you should avoid sharing unless you want to access the same data from multiple experiments
and you are willing to risk the problem noted above.

If you load the wave via the Load Igor Binary dialog or via the Browse Waves dialog, Igor will ask you if
you want to share or copy. You can use the Miscellaneous Settings dialog to always share or always copy
instead of asking you.

If you load the wave via the LoadWave operation, from the command line or from an Igor procedure, Igor
will not ask what you want to do. You should normally use this operation’s /H flag, which uses “copy the
wave to home” and avoids sharing.

If you use the Data Browser to transfer waves from one experiment to another, Igor always copies the waves.

Adopting Notebook and Procedure Files

Adoption is a way for you to copy a notebook or procedure file into the current experiment and break the
connection to its original file. The reason for doing this is to make the experiment self-contained so that, if
you transfer it to another computer or send it to a colleague, all of the files needed to recreate the experiment
will be stored in the experiment itself.

To adopt a file, choose Adopt Window from the File menu. This item will be available only if the active
window is a notebook or procedure file that is stored separate from the current experiment and the current
experiment has been saved to disk.

If the current experiment is stored in packed form then, when you adopt a file, Igor does a save-as to a tem-
porary file. When you subsequently save the experiment, the contents of the temporary file are stored in the
packed experiment file. Thus, the adoption is not finalized until you save the experiment.

If the current experiment is stored in unpacked form then, when you adopt a file, Igor does a save-as to the
experiment’s home folder. When you subsequently save the experiment, Igor updates the experiment’s rec-
reation procedures to open the new file in the home folder instead of the original file. Note that if you adopt
a file in an unpacked experiment and then you do not save the experiment, the new file will still exist in the
home folder but the experiment’s recreation procedures will still refer to the original file. Thus, you should
save the experiment after adopting a file.

To “unadopt” a procedure or notebook file, choose Save Procedure File As or Save Notebook As from the
File menu.

Adopt All

You can adopt all referenced notebooks, procedure files and waves by pressing Shift and choosing File—»>Adopt
All This is useful when you want to create a self-contained packed experiment to send to someone else.

I1-37

Chapter II-3 — Experiments, Files and Folders

Adopt All

This operation copies external files such as

0 Motebooks, Procedures and Waves to the current
experiment, breaking the connection with the
original files.

You may want to then save the experiment under a
different name

@ Exclude WaveMetrics Procedures

[Exclude Waves

(Help ! (Cancel)

After clicking Adopt, choose File—Save Experiment As to save the packed experiment.

How Experiments Are Loaded

It is not essential to know how Igor stores your experiment or how Igor recreates it. However, understand-
ing this may help you avoid some pitfalls and increase your overall understanding of Igor.

Experiment Recreation Procedures

When you save an experiment, Igor creates procedures and commands, called “experiment recreation pro-
cedures” that Igor will execute the next time you open the experiment. These procedures are normally not
visible to you. They are stored in the experiment file.

The experiment file of an unpacked experiment contains plain text, but its extension is not “.txt”, so you
can’t open it with most word processors or editors. You can open it by choosing File—+Open File—>Notebook
and then selecting All Documents from the Show pop-up menu (Macintosh) or All Files from the Files Of
Type pop-up menu (Windows). This is not something you would normally do, but it can be instructive.

As an example, let’s look at the experiment recreation procedures for a very simple experiment.

I1-38

Chapter 1I-3 — Experiments, Files and Folders

f Platform=windowsNT, IGORVersion=5 000
Silent 101 ff use | as bitwise ar - not comment

NotebookO:Experiment #2. uxp E]@

MewPath home "“Experiment #2 Folder'—— - Creates the home symbolic path.
NewPath/Z Data " Igor Data Files" ——— i Creates a user symbolic path.
Readvariables Reads the experiment’s variables from the “variables” file.

LoadWave/C /P=home "wave0.ibw"
LoadWavelC /P=home "wave 1 ibw" }7— Loads the experiment’s waves.

LoadWave/C /P=home "wave2 ibw"

DefaultFont "Arial"

MovelindowiP 4.842 2 505 2,336 5 | - :
MOveWIndow/C 4 2 349 4 565 2 426 2 }7 Positions the procedure and command windows.

Graph0f) Recreates graph that existed when the experiment was saved.
Window Graph0() : Graph This macro is executed by the GraphO() call above.
Pauselpdate; Silent 1 A building window. .
Display A=(4.8 42 2 400 2 249 8) wavel wavel
EndMacro .
b.s | KN [4

When you open the experiment, Igor reads the experiment recreation procedures from the experiment file into
the procedure window and executes them. The procedures recreate all of the objects and windows that con-
stitute the experiment. Then the experiment recreation procedures are removed from the procedure window
and your own procedures are loaded from the experiment’s procedure file into the procedure window.

For a packed experiment, the process is the same except that all of the data, including the experiment rec-
reation procedures, is packed into the experiment file.

Experiment Initialization Commands

After executing the experiment recreation procedures and loading your procedures into the procedure window,
Igor checks the contents of the procedure window. Any commands that precede the first macro, function or
menu declaration are considered initialization commands. If you put any initialization commands in your pro-
cedure window then Igor executes them. This mechanism initializes an experiment when it is first loaded.

Savvy Igor programmers can also define a function that is executed whenever Igor opens any experiment.
See User-Defined Hook Functions on page IV-226.

Errors During Experiment Load

Itis possible for the experiment loading process to fail to run to a normal completion. This occurs most often
when you run out of memory or when you move or rename a file or folder and you can’t help Igor find it.
It also happens if you move an experiment to a different computer and forget to also move referenced files
or folders. See References to Files and Folders on page 1I-36 for details.

These errors occur while Igor is executing the experiment recreation procedures. Igor uses several tech-
niques to try to find the missing file or folder (see How Igor Searches for Missing Folders on page 1I-41).
The techniques include asking you for help via a dialog like this:

I1-39

Chapter II-3 — Experiments, Files and Folders

Missing Wawe File

Error loading wawve file: "wawve(.ibw"
the file or folder could not be found.

The wave may be needed to recreate a graph, table or other
object in the experiment.

Do you want to look for the wave file?
(Abort Experiment Load) (Skip this Wave) (Help) (Look for File)

If you elect to abort the experiment load, Igor will alert you that the experiment is in an inconsistent state.
It displays some diagnostic information that might help you understand the problem and changes the
experiment to Untitled. You should use the New Experiment or Open Experiment items in the File menu
to clear out the partially loaded experiment.

If you elect to skip loading a wave file, you may get another error later, when Igor tries to display the wave
in a graph or table. In that case, you will see a dialog like this:

Macro Execute Error

expecte d wave name

Errorin Procedure:Graph0

Display /W=(5,42,400,250) wavel,wavel

f—QnH—HH Retry 'x Abort Experiment Load JI (" Help)

In this example, Igor is executing the GraphO macro from the experiment recreation procedures in an
attempt to recreate a graph. Since you elected to skip loading wave0, Igor can’t display it.

You have three options at this point, as explained in the following table.

Option Effect

Quit Macro Stops executing the current macro but continues experiment load. In this
example, Graph0O would not be recreated. After the experiment load Igor dis-
plays diagnostic information.

Abort Experiment Load Aborts the experiment load immediately and displays diagnostic information.

Fix Macro In this example, you could fix the macro by deleting “wave0,”. You would
then click the Retry button. Igor would create GraphO without wave0 and
would continue the experiment load.

With the first two options, Igor leaves the experiment untitled so that you don’t inadvertently wipe out the
original experiment file by doing a save.

I1-40

Chapter 1I-3 — Experiments, Files and Folders

How Igor Searches for Missing Folders

When Igor saves an experiment, it stores commands in the experiment file that will recreate the experi-
ment’s symbolic paths when you reopen the experiment. The commands look something like this (in the
fourth line, under Windows the path would start with “C:”):

NewPath home ":Test Exp Folder:"

NewPath/Z Datal "::Data Folder #1:"

NewPath Data2 "::Data Folder #2:"

NewPath/Z Data3 "hd:Test Runs:Data Folder #3:"

The location of the home folder is specified relative to the experiment file. The locations of all other folders
are specified relative to the experiment folder or, if they are on a different volume, using absolute paths.
Using relative paths, where possible, ensures that no problems will arise if you move the experiment file
and experiment folder together to another disk drive or another location on the same disk drive.

The /Z flags indicate that the experiment does not need to load any files from the Datal and Data3 folders.
In other words, the experiment has symbolic paths for these folders but no files need to be loaded from them
to recreate the experiment.

When you reopen the experiment, Igor executes these NewPath commands. If you have moved or renamed
folders or if you have moved the experiment file, the NewPath operation will be unable to find the folder.
Here is what Igor does in this case.

First of all, if the symbolic path is not needed to recreate the experiment then Igor does nothing. It generates
no error and just continues the load. The experiment will wind up without the missing symbolic path.

If the missing folder is needed to load some object then Igor will search for it using a number of techniques.
The search uses additional information that Igor stores in the experiment file when the experiment is saved.
This includes such things as the full path to the folder, the folder’s “directory ID” and an “alias record”,
which are explained in the next section.

Folder Search Techniques

1. Search by full path
A full path is one that starts from the volume that the folder is on. An example is “hd:Test Runs:Da-
ta Folder #3:” (Macintosh) or “C:\ Test Runs\Data Folder #3\” (Windows).
This technique will find the folder if the full path to the folder is the same as when the experiment
was saved. This handles the case where you moved or renamed the experiment folder but did not
move or rename the missing folder.

2. Search by directory ID (Macintosh only)
The directory ID is a unique number that the Macintosh file system assigns to each folder on a par-
ticular volume. This technique will find the folder if the missing folder was moved or renamed but
not moved to a different volume.

3. Search using Alias Manager (Macintosh only)
The Alias Manager is a Macintosh feature designed to locate missing files and folders. If Igor is try-
ing to create a symbolic path that is not needed to recreate the experiment then Igor will skip the
Alias Manager search. The Alias Manager’s attempt to mount network volumes is generally not de-
sirable if the folder is not critical for the experiment load.

4. Search of the Igor Pro Folder
If the path is a full path that points to a folder inside the Igor Pro Folder (e.g., “hd:Igor Pro Folder:User
Procedures” on a Macintosh), then Igor looks for the folder inside the Igor Pro Folder, even if the Igor
Pro Folder is on a differently-named root volume (e.g., “C:\Igor Pro Folder\ User Procedures” on a PC).

5. Search of the volume containing Igor
If the path is a full path (e.g., “hd:Igor Work:Data Files” on a Macintosh) then Igor searches for the
folder at the same location but on the volume containing the Igor application (e.g., “C:\Igor
Work\ Data Files” on a PC).

6. Search of the volume containing the experiment file
This is the same as the previous search except that Igor uses the volume containing the experiment file.

I1-41

Chapter II-3 — Experiments, Files and Folders

The last three techniques are designed to help find files when you move an experiment from one platform to
another. They work only if the path is a full path, which will be the case if the target folder is on a different

volume from the experiment file. If this is not the case, then the path will be relative to the experiment file and
Igor will be able to find the target folder if it has the same relationship to the experiment file on both platforms.

Note: If you use Igor on both Macintosh and Windowrs, it is best if you use the same folder hierarchy
for your Igor files on both computers. This will give Igor the best chance of automatically finding
missing folders.

If all of these techniques fail, Igor asks if you want to look for the folder by putting up a the Missing Folder dialog.

Missing Folder

Error creating the symbolic path: July_Data

the specified directory can not be found

Igar uses symbolic paths to find folders that contain wawve or other files.
This path may be needed to recreate the experiment.

Do you want to look for the falder for this path?

Abort Experiment Load | Skip this Path ‘ Help ‘ Look for Folder |

| | |
[[[
Click to abort the entire Click if you think that the Click to get another dialog in which

experiment load. folder can not be found. you can find the missing folder.

If you click the Look for Folder button, Igor presents another dialog in which you can find the missing folder.

If you click Skip this Path in the Missing Folder dialog then Igor will not create the symbolic path and there-
fore you will get one or more errors later, when Igor tries to use it. For example, if the experiment loads two
waves using the Data2 path then the experiment’s recreation commands would contain two lines like this:

LoadWave/C/P=Data?2 "wave(.bwav"
LoadWave/C/P=Data2 "wavel.bwav"

If you were unable to find the Data2 folder then each of these LoadWave commands will present the
Missing Wave File dialog.

If you are unable to find the wave file and if the wave is used in a graph or table, you will get more errors later
in the experiment recreation process, when Igor tries to use the missing wave to recreate the graph or table.

How Experiments Are Saved

When you save an experiment for the first time, Igor just does a straight-forward save in which it creates a
new file, writes to it, and closes it. However, when you resave a pre-existing experiment, which overwrites
the previous version of the experiment file, Igor uses a "safe save" technique. This technique is designed to
preserve your original data in the event of an error during the save.

For purposes of illustration, we will assume that we are resaving an experiment file named "Experiment.pxp".
The safe save proceeds as follows:

1. Write the new data to a temporary file named "Experiment.pxpT0". If an error occurs during this
step, the save operation is stopped and Igor displays an error message.

2. Delete the original file, "Experiment.pxp".

3. Rename the temporary file with the original name. That is, rename "Experiment.pxpT0" as "Exper-
iment.pxp".

On Windows, the temporary file name is "Experiment.pxpT0" but on Macintosh it is "Experiment.pxpT0.noin-

dex". The ".noindex" suffix tells Apple's Spotlight program not to interfere with the save by opening the tem-

porary file at an inopportune time.

I1-42

Chapter 1I-3 — Experiments, Files and Folders

The next three subsections are for use in troubleshooting file saving problems only. If you are not having a
problem, you can skip them.

Experiment Save Errors

There are many reasons why an error may occur during the save of an experiment. For example, you may run
out of disk space, the server volume you are saving to might be disconnected, or you may have a hardware
failure, but these are uncommon.

The most common reason for a save error is that you cannot get write access to the file because:

The file is locked (Macintosh Finder) or marked read-only (Windows desktop).
You don't have permission to write to the folder containing the file.
You don't have permission to write to this specific file.

The file has been opened by another application. This could be a virus scanner, an anti-spyware
program or an indexing program such as Apple's Spotlight.

Here are some troubleshooting techniques.

Ll e

Macintosh File Troubleshooting

Open the file's Get Info window and verify that the file is not marked as locked. Also check the lock setting of
the folder containing the file.

Next try doing a Save As to a folder for which you know you have write access, for example, to your home
folder (e.g., "/Users/<user>" where <user> is your user name). If this works, the problem may be that you did
not have sufficient permissions to write to the original folder or to the original file. This would happen, for
example, if the folder was inside the Applications folder and you are not running as an administrator.

If you think you should be able to write to the original file location, look at the Ownership and Permissions
section (Mac OS X 10.4) or the Sharing and Permissions section (Mac OS X 10.5) of the Get Info window for
both the file and the folder containing it and make sure that you have read/write access.

If you are able to save a file to a new location but get an error when you try to resave the file, which overwrites
the original file, then this may be an issue of another program opening the file at an inopportune time. This
typically happens in step 3 of the safe-save technique described above. Try disabling your antivirus software.
For a technical explanation of this problem, see http://developer.apple.com/qa/qa2006/qal497.html.

Windows File Troubleshooting

Open the file's Properties window and uncheck the read-only checkbox if it is checked. Do the same for the
folder containing the file.

Next try doing a Save As to a folder for which you know you have write access, for example, to your home
folder (e.g., My Documents). If this works, the problem may be that you did not have sufficient permissions
to write to the original folder or to the original file. This would happen, for example, if the folder was inside
the Program Files folder and you are not running as an administrator.

If you think you should be able to write to the original file location, you will need to investigate permissions.
By default, Windows runs in "Simple File Sharing" mode. In this mode, a file or folder's Properties window
does not tell you anything about permissions. Therefore, to investigate, you must leave simple file sharing
mode. You may want to enlist the help of a local expert as this can get complicated.

You turn simple file sharing off by choosing Tools—Folder Options from any folder's window. In the Folder
Options dialog, click the View tab and uncheck the Use Simple File Sharing checkbox at the bottom of the tab.
When you next display the Properties dialog for a file or folder, it will include a Security tab in which you can
inspect permissions.

In the Security tab of the Properties window, make sure you have read/write permission and modify permis-
sion. The modify permission is required in order for Igor to delete the file in step 2 of the safe-save technique
described above. Verify that you have write and modify permission for both the file and the folder containing
it.

I1-43

http://developer.apple.com/qa/qa2006/qa1497.html

Chapter II-3 — Experiments, Files and Folders

If you are able to save a file to a new location but get an error when you try to resave the file, which overwrites
the original file, then this may be an issue of another program opening the file at an inopportune time. This
typically happens in step 3 of the safe-save technique described above. Try disabling your antivirus software.
For a technical explanation of this problem, see http://support.microsoft.com/kb/316609.

Special Folders

This section describes special folders that Igor automatically searches when looking for help files, Igor
extensions (plug-ins that are also called XOPs) and procedure files.

The folder containing the Igor Pro application file is called the "Igor Pro Folder". Several subfolders in the
Igor Pro Folder are treated specially, as described below.

At launch time, Igor creates another special folder, called the Igor Pro User Files folder, outside of the Igor
Pro Folder. By default, this folder has the Igor Pro major version number in its name, for example, "Igor Pro
6 User Files", but it is generically called the "Igor Pro User Files" folder.

On Macintosh, the Igor Pro User Files folder is created by default in "/Users/<user>/Documents/WaveMet-
rics".

On Windows it is created by default in "<My Documents>\ WaveMetrics".

You can change the location of your Igor Pro User Files folder using Misc—>Miscellaneous Settings but this
should rarely be necessary.

Several subfolders in the Igor Pro User Files folder are also treated specially as described in the following
sections. Here we see the Igor Pro Folder on the left and the Igor Pro User Files folder on the right with the
special subfolders highlighted:

® O © ligor Pro Folder O ® O O /[Igor Pro 6 User Files &
About Igor Pro User Files.t
™ Igor Extensions

™ Igor Help

background. pct
» | Examples
[IFDL Procedures
! lgor Extensions
! Igor Help Files

® Igor Procedures
™ User Procedures

@ Igor Pro.app

® 1gor Procedures

[Learning Ajds — Iy
License Agreement.txt

[Manual

[0 Miscellaneous

[More Extensions

[~ More Help Files

|~ Product Dermos
ReadMe.ihf

[0 Technical Motes
! User Procedures

I:_li!iij.

YyYYy yy

v

! Waveh etrics Procedures

= P 4

Help files, extensions and procedure files are active if they, or aliases or shortcuts pointing to them, are in
the appropriate special subfolder. When you install Igor, special subfolders inside the Igor Pro Folder
contain files that are active. Examples include the standard WaveMetrics help files, standard WaveMetrics

I1-44

http://support.microsoft.com/kb/316609

Chapter 1I-3 — Experiments, Files and Folders

extensions like the Excel file loader, and standard WaveMetrics procedure files that add items to Igor's
built-in menus.

You may want to activate additional help files, extensions and procedure files that are part of the Igor Pro
installation, that you create or that you receive from third parties. You can do this by adding files or
aliases/shortcuts pointing to files to the special subfolders within the Igor Pro Folder. However, it is better
to use the special subfolders within the Igor Pro User Files folder because the Igor Pro Folder is not acces-
sible to non-administrative users and because adding your own files to the Igor Pro Folder complicates
backup and updating Igor.

Igor Pro Folder

The Igor Pro Folder is the folder containing the Igor application. Igor looks inside the Igor Pro Folder for
these special subfolders: Igor Help Files, Igor Extensions, Igor Procedures, User Procedures and WaveMet-
rics Procedures.

The Igor installer puts files in the special folders. Igor searches them when looking for help files, extensions
and procedure files. In most cases, you should not put files in these special folders - use the Igor Pro User
Files folder instead.

Igor Pro User Files

Igor automatically creates the Igor Pro User Files folder at launch time if it does not already exist. By default,
this folder has the Igor Pro major version number in its name, for example, "Igor Pro 6 User Files", but it is
generically called the "Igor Pro User Files" folder.

Igor looks inside the Igor Pro User Files folder for these special subfolders: Igor Help Files, Igor Extensions,
Igor Procedures, and User Procedures.

On Macintosh, the default location is:
/Users/<user>/Documents/WaveMetrics/Igor Pro 6 User Files
On Windows, the default location is:

<My Documents>\WaveMetrics\Igor Pro 6 User Files

You can change the location of your Igor Pro User Files folder using Misc—Miscellaneous Settings but this
should rarely be necessary.

You can display the Igor Pro User Files folder on the desktop by choosing Help—Show Igor Pro User Files.
To display both the Igor Pro Folder and the Igor Pro User Files folder, press the shift key and choose
Help—Show Igor Pro Folder and User Files.

You can put files or aliases/shortcuts pointing to files in these subfolders. Igor searches them when looking

for help files, extensions and procedure files.

Igor Help Files Folder

When Igor starts up, it opens any Igor help files in "Igor Pro Folder/Igor Help Files" and in "Igor Pro User
Files/Igor Help Files". It treats any aliases, shortcuts and subfolders in Igor Help Files in the same way.

Standard WaveMetrics help files are pre-installed in "Igor Pro Folder/Igor Help Files".

If there is an additional help file that you want Igor to automatically open at launch time, put it or an
alias/shortcut for it in "Igor Pro User Files/Igor Help Files".

Igor Extensions Folder

When Igor starts up, it searches "Igor Pro Folder/Igor Extensions" and "Igor Pro User Files/Igor Extensions"
for Igor extension files. These extensions are available for use in Igor. It treats any aliases, shortcuts and sub-
folders in Igor Extensions in the same way. See Igor Extensions on page I1I-419 for details.

I1-45

Chapter II-3 — Experiments, Files and Folders

Standard WaveMetrics extensions are pre-installed in "Igor Pro Folder/Igor Extensions".

If there is an additional extension that you want to use, put it or an alias/shortcut pointing to it in "Igor Pro
User Files/Igor Extensions". Additional WaveMetrics extensions are described in the "XOP Index" help file
and can be found in "Igor Pro Folder/More Extensions". You may also create your own Igor extensions or
obtain them from third parties.

Igor Procedures Folder

When Igor starts up, it automatically opens any procedure files in "Igor Pro Folder/Igor Procedures" and in
"Igor Pro User Files/Igor Procedures". It treats any aliases, shortcuts and subfolders in Igor Procedures in
the same way. Such procedure files are called "global" procedure files and are available for use from all
experiments. See Global Procedure Files on page III-341 for details.

Standard WaveMetrics global procedure files are pre-installed in "Igor Pro Folder/Igor Procedures".

If there is an additional procedure file that you want Igor to automatically open at launch time, put it or an
alias/shortcut pointing to it in "Igor Pro User Files/Igor Procedures". Additional WaveMetrics procedure
files are described in the "WM Procedures Index" help file and can be found in "Igor Pro Folder/WaveMet-
rics Procedures"”. You may also create your own global procedure files or obtain them from third parties.

User Procedures Folder

You can load a procedure file from another procedure file using a #include statement. This technique is
used when one procedure file requires another. See Including a Procedure File on page I1I-342 for details.

When Igor encounters a #include statement, it searches for the included procedure file in "Igor Pro
Folder/User Procedures" and in "Igor Pro User Files/User Procedures". Any aliases, shortcuts and subfold-
ers in User Procedures are treated the same way.

If there is an additional procedure file that you want to include from your procedure files, put it or an
alias/shortcut pointing to it in "Igor Pro User Files/User Procedures".

WaveMetrics Procedures Folder

The "Igor Pro Folder/WaveMetrics Procedures” folder contains an assortment of procedure files created by
WaveMetrics that may be of use to you. These files are described in the WM Procedures Index help file
which you can access through the Windows—Help Windows menu.

You can load a WaveMetrics procedure file from another procedure file using a #include statement. See
Including a Procedure File on page I1I-342 for details.

There is no WaveMetrics Procedures folder in the Igor Pro User Files folder.

Activating Additional WaveMetrics Files

If you want to activate a WaveMetrics file that is stored in the Igor Pro Folder, make an alias or shortcut for
the file and put it in the appropriate subfolder of the Igor Pro User Files folder.

For example, the HDF5 file loader package consists of an extension named HDF5.xop, a help file named
"HDF5 Help.ihf" and a procedure file named "HDF5 Browser.ipf". Here is how you would activate these
files:

1. Press the shift key and choose Help—Show Igor Pro Folder and User Files. This displays the Igor
Pro Folder and the Igor Pro User Files folder on the desktop.

2. Make an alias/shortcut for "Igor Pro Folder/More Extensions/File Loaders/HDF5.xop" and put it in
"Igor Pro User Files/Igor Extensions". This causes Igor to load the extension the next time Igor is
launched.

3. Make an alias/shortcut for "Igor Pro Folder/More Extensions/File Loaders/HDF5 Help.ihf" and put
it in "Igor Pro User Files/Igor Help Files". This causes Igor to automatically open the help file the
next time Igor is launched. This step is necessary only if you want the help file to be automatically
opened.

II-46

Chapter 1I-3 — Experiments, Files and Folders

4. Make an alias/shortcut for "Igor Pro Folder/WaveMetrics Procedures/File Input Output/HDF5
Browser.ipf" and put it in "Igor Pro User Files/Igor Procedures". This causes Igor to load the proce-
dure the next time Igor is launched and to keep it open until you quit Igor.

5. Restart Igor.

You can verify that the HDF5 extension and the HDF5 Browser procedure file were loaded by choosing

Data—Load Waves—New HDF5 Browser. You can verify that the HDF5 Help file was opened by choosing

Windows—Help Windows—HDF5 Help.ihf.

Activating Other Files

You may create an Igor package or receive a package from a third party. You should store each package in
its own folder in the Igor Pro User Files folder or elsewhere, at your discretion. You should not store such
files in the Igor Pro Folder because it complicates backup and updating.

To activate files from the package, create aliases/shortcuts for the package files and put them in the appro-
priate subfolder of the Igor Pro User Files folder.

If you have a single procedure file or a single Igor extension that you want to activate, you may prefer to
put it directly in the appropriate subfolder of the Igor Pro User Files folder.

Activating Files in a Multi-User Scenario

Our recommendation is that you activate files using the special subfolders in the Igor Pro User Files folder,
not in the Igor Pro Folder. An exception to this is the multi-user scenario where multiple users are running
the same copy of Igor from a server. In this case, if you want to activate a file for all users, put the file or an
alias/shortcut for it in the appropriate subfolder of the Igor Pro Folder. Users will have to restart Igor for
the change to take effect.

Igor File-Handling

Igor has many ways to open and load files. The following sections discuss some of the ways Igor deals with
the various files it is asked to open.

Open or Load File Dialog

When you open a file using an open file dialog, there is no question of how Igor should treat the file. This
is not always the case when you drop a file onto the Igor icon or double-click a file on the desktop.

Often, Igor can determine how to open or load a file, and it will simply do that without asking the you about
it. Sometimes Igor recognizes that a file (such as a plain text file or a formatted Igor notebook) can be appro-
priately opened several ways, and will ask you what to do by bringing up the Open or Load File Dialog.
The dialog presents a list of ways to open the file (usually into a window) or to load it as data. You can also
change the file’s name, extension, type, and creator code.

I1-47

Chapter II-3 — Experiments, Files and Folders

These open a file into a Open or Load File

particular kind of window, Open 54| Open Experiment (packed)

or as an experiment. Open Experiment (unpacked) i =
Open Formatted Notebook s g asilact
opened 2= an IGOR

Open Help File binary wave data
These load data from a file usin Open Procedure File file. ")
a particular file loader s Open Plain Text Notebook The file type cade is This information
p ! Load Igor Binary data GBS and the only appears on
Load Igor Text data creator code is 'IGRO’

) - | usor’s). a Macintosh.
These load data from a file by Load General Text data 4 :
.) .) Load Delimited Text data v
presetting and invoking a file
loader dialog. Path: Macintosh HD:Users:Igor:
Rename File: elvish.ibw
This checkbox only] Add [Fix file extension for Windows® compatibility
appears on a Macintosh. _ | Fix file type and creator for Macintosh® compatibility

This button reads Open, Load or Dialog

depending on the Open As selection £ Load } (" Help) (Cancel)
Tip: You can force this dialog to appear by holding down Shift when opening a file through the Recent

Files or Recent Experiments menus, or when dropping a file onto the Igor icon.

This is especially useful for opening Igor help files as a notebook file for editing, or to open a
notebook as a help file, causing Igor to compile it.

The list presents three kinds of methods for handling the file:

1. Open the file as a document window or an experiment.
2. Load the file as data without opening another file dialog.
3. Load the file as data through the Load Waves Dialog or a File Loader Extension dialog.

If you choose one of the Load <whatever> Dialog methods, Igor will open the selected dialog as if you had
chosen it from the Load Waves submenu of the Data menu.

Information about the file, or about how it was most recently opened, is displayed to the right of the list.
On a Macintosh, the file’s type and creator codes are also shown. The complete path to the file is shown
below the list.

You can rename the file, and it will be changed before the file is opened or loaded.

Use the Add/Fix file extension checkbox to conform the file’s extension (one is added if necessary) to what
is needed for the Windows operating system to automatically open the file with the Windows version of
Igor when the file is double-clicked. Adding an extension may also helps the Mac OS X Finder determine
how the file is to be handled.

While the Add/Fix file extension checkbox is selected, Igor will update the extension when you choose from
the list. Igor stops updating the extension when you deselect the checkbox.

Macintosh: Mac OS X uses both the file’s extension and its file type and creator codes when determining how
a file should be handled. Select the Fix file type and creator checkbox to change file’s type and creator codes
so that the Mac OS will automatically open the file with the Macintosh version of Igor when the file is
double-clicked, and so that it will be opened using the method selected in the list. (The file type depends on
how you choose to open or load the file, but the creator is always changed to Igor’s creator code.) The Fix
file type and creator checkbox will be disabled if the type and creator are already correct.

Note: Changing the file’s extension, file type, or creator does not convert the contents of the file in any
way. If you open what is actually an Igor Binary data file by choosing Open Help File,
WaveMetrics won't be held liable for the results!

The file renaming and the type/creator checkbox are provided to help users share files between the Macin-
tosh and Windows versions of Igor.

I1-48

Chapter 1I-3 — Experiments, Files and Folders

Recent Files and Experiments

When you use a dialog to open or save an experiment or a file, Igor adds it to the Recent Experiments or
Recent Files submenu (in the File menu). When you choose an item from these submenus, Igor opens the
experiment or file the same way in which you last opened or saved it.

For example, if you last opened a text file as an unformatted notebook, selecting the file from Recent Files
will again open the file as an unformatted notebook. If you loaded it as a general text data file, Igor will load
it as data again.

Igor does not remember all the details of how you originally load a data file, however. If you load a text
data file with all sorts of fiddly tweaks about the format, Igor won’t load it using the those same tweaks. To
guarantee that Igor does load the data correctly, use the appropriate Load Data dialog.

Selecting an experiment or file with Shift held down, will cause the Open or Load File Dialog to appear, in
which you can choose how Igor will open or load that file.

Desktop Drag and Drop

On the desktop, you can drop one or more files of almost any type onto the Igor Pro icon. Under Windows,
you can drag files into any Igor window. Igor will open files that it understands and ignore those that it
doesn’t. One use for this feature is to load multiple data files in one operation; simply select the data files
and drop them on the Igor icon.

If the file has been opened or loaded recently (it is listed in the Recent Files or Recent Experiments menuy),
then Igor will reopen or reload it the same way. See Recent Files and Experiments on page 1I-49.

Sometimes Igor recognizes that a file (such as a plain text file or a formatted Igor notebook) can be appro-
priately opened several ways, and will ask you what to do by bringing up the Open or Load File Dialog.
Igor also opens the dialog if it does not recognize the file.

Tip: Holding down Shift before releasing the mouse button to drop the files onto Igor forces the Open
or Load File Dialog to be displayed.

This table shows how Igor attempts to handle various types of files.

File File Extension =~ What Igor Does

Experiment file .pxp or .uxp Opens the experiment.

Igor Binary wave (.ibw or .bwav) .ibw Loads as a data file, creating waves.

Text file that appears to contain no data Opens as plain-text notebook.

Text file that appears to contain data Loads as a data file, creating waves.

Igor help file (.ihf) .ihf Opens as help file.

Igor procedure file (.ipf) ipf Opens as procedure file.

Igor notebook file (.ifn or .ift) .ifn or .ift Opens as notebook.

Igor Extension .Xop Error dialog. See Activating Extensions on page
111-420.

Unknown file Displays the Open or Load File Dialog.

Igor extension files or aliases (Macintosh) or shortcuts (Windows) for them must be in "Igor Pro User
Files/Igor Extensions", "Igor Pro Folder/Igor Extensions" or in a subfolder when Igor is launched. Dragging
an XOP onto the Igor icon will not activate an extension that wasn’t in the Igor Extensions folder when Igor

was launched.

Advanced programmers can customize Igor to handle specific types of files in different ways, such as auto-
matically loading files with an XOP. See User-Defined Hook Functions on page IV-226.

I1-49

Chapter II-3 — Experiments, Files and Folders

Problems With File Names Using Non-ASCII Characters

This section explains errors that you may encounter when attempting to access files or folders containing
characters that are not part of the current system encoding. For example, if you try to open a file with a Jap-
anese name while running with English as your system language, you will get an error.

The simplest way avoid these problems is to limit file names to the standard ASCII characters. These have
character codes ranging from 32 decimal to 127 decimal and include the upper- and lower-case English let-
ters, digits, and common punctuation symbols. All encodings include these characters as a subset so file
names consisting of these characters work regardless of which encoding is the system encoding.

If you experience these errors and do not want to change your file names, read the rest of this section to
understand the fundamental problem and how to deal with it.

Igor internally stores file paths using the "system encoding".

On Mac OS X, the system encoding in effect for Igor is determined by the first language in the Languages
list in the International Preferences panel at the time the Finder is launched. Typical system encodings are
"Mac Roman", for Western European languages, and "Mac Japanese".

On Windows, the system encoding in effect for Igor is determined by the "Language for non-Unicode Pro-
grams" setting in the Advanced tab of the Regional and Language Options control panel at the time the
operating system starts up.

Operating systems store file and folder information using Unicode - a character encoding system that can
represent virtually all characters in all languages.

In the ideal world, Igor would be a Unicode program and dealing with a Unicode-based file system would
be easy. However, converting Igor, as well as all XOPs, to Unicode, is a massive task, so we have deferred
it. This means that Igor must internally convert Unicode file names and paths to the system encoding.

The conversion of Unicode file and folder names to system encoding brings some potential problems with
it. The problems stem from the fact that Unicode can represent any character while the system encoding can
represent only a specific subset of characters.

Imagine that you are running on Mac OS X with Mac Roman as the system encoding and you try to open a
file with a Japanese file name. Igor gets the Unicode version of the Japanese file name from Mac OS X and
tries to convert it to Mac Roman. This causes an error because Japanese characters can not be represented
in the Mac Roman encoding. A similar error occurs on Windows.

In order to access files with Japanese names, or use paths containing Japanese names, you must run with
Japanese as the system encoding. If you have booted the system with Japanese as the preferred language
then the system encoding is Japanese and you can access Japanese files. If another language is preferred
then you must make Japanese the preferred language and then reboot. (In Mac OS X you can also log out
and back in or relaunch the Finder by pressing option key while clicking the Finder icon in the dock.) Then
relaunch Igor.

A similar problem arises if you are running with Japanese as the system encoding and you try to access a

file whose name contains English special characters like the bullet character. When Igor tries to convert the
Unicode representation of the file name to Japanese, it gets an error because the English bullet character is
not in the Japanese encoding. In a case like this, you would have to switch the preferred language to English
to access the file from Igor.

I1-50

Chapter

Windows

OVETVIBW ..ottt bbb bbb a bbbt a et 52
The Command WINAOW ..o e 52
The Rest of the WINAOWS........ccviiiiiiiiiiiiiii e 52

The Target WINAOW ...ttt 53

Window Names and Titlesccovviiiiiiiiiiniiiii e 54
Allowable WINdow NAIMES ..ot 55

The Open File SUDIMENUcooiiiiiiii e s 56

The WINAOWS MENU ..ot 56
Making a New WiINAOW ...ttt 56
Activating WINAOWSocouoiiiieii et 56
Showing and Hiding WINAOWSccouiieiiiiiiicc e 56
CloSing @ WINAOWoiiiiiiiei ettt 57

Killing Versus Hidingooioeeieiiiiiiicce et 57
Saving the Window CONtents ..ot 57
Close WINAOW DIALOZScoveeeeiiirr et e 58
Saving a Window as a Recreation MaCIO ...t enene 59
WiIndow Macros SUDIMENUS ... 60
The Name of a Recreated WIndowccoeviviiiiininiiiiiiines 61
Changing a Window’s Style FTom a Macro.........cccviiiiniiiiiiicciiccccccccccc s 61
The Window Control DIialog.........ceueueieiiicieiiicieie ettt 62
Arranging WiNAOWS........ccouiiiiiiiic ettt 63
The Tile or Stack Windows Dialog..........ccceueiiiiiiiiiiicieicce et 64
Window Position and Size Managementcccccceiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeseeenenenaes 65
Move to Preferred POSItIONcovviiiiiiiiiiiiccc e 65
Move to Full Size POSIHON.........cccoiiiiiiiiiiiiii e 65
Retrieve WINAOWccoiiiiiiiiiiiiiiiii s 65
Retrieve ALl WINAOWS........ccoviiiiiiiiiiiiiiiiii s 65
Send to Back — Bring t0 FIONt.......ccooiiiiiiiie e e 65

TeXt WINAOWS ..ot 66
Executing Commands ... s 66
Text WIndow Navigation ... 66
Finding Text in the Active WINAOW ... 67
FINd aNd REPIACEvviiiie et 67
Finding Text in Multiple WINAOWS..........ccoiiiiinic e 67

Text MagnifiCationc.cccccuiiiiiiiiiiiiceee ettt 69

WINAOW USET DAtcueuivieiiiiiiiiiicicicictcctctctctttt sttt 70

Chapters About Specific WINAOWS ...t 70

LT g Te (oA TS qTe) s b X - JE R 71

Chapter lI-4 — Windows

Overview

This chapter describes Igor’s windows in general terms, just a bit about the File menu, and the Windows
menu and window recreation macros in detail.

The Command Window

When Igor first starts, the command window appears at the bottom of the screen:

006 Untitled

oMake/N=100 wawvel wavel wave? .
eSetiicale x,0, 24P, wavel wave | wave? m Scroll to see other previously executed

ewavell=sin(x) jwave 1 =cos(x) commands in the history area.
eDisplay wavel, wavel .
wwaveZ=wave D%wave |

History area.

oA e

Igor Help Browser button. Click for Help Browser.

Command line: AppendTolGraph wave2 By

Scroll to see other unexecuted commands in the command buffer.

Commands are automatically entered and executed in the command window’s command line when you
use the mouse to “point-and-click” your way through dialogs. You may optionally type the commands
directly and press Return or Enter. Igor preserves a history of executed commands in the history area.

For more about the command window, see Chapter II-2, The Command Window, and Chapter IV-1,
Working with Commands.

The Rest of the Windows

At startup, by default, Igor displays a table window. There are also a number of additional windows which
are initially hidden:

¢ The main procedure window
® The Igor Help Browser
* Help windows for files in "Igor Pro Folder/Igor Help Files" and "Igor Pro User Files/Igor Help Files"

You can create additional windows for graphs, tables, page layouts, notebooks, panels and auxiliary pro-
cedure windows, as well as more help windows.

I1-52

Chapter II-4 — Windows

066 Panel0 e Procedure
f1[7 |E el [=1 |E atl [0 |@l do @ = na riGlobals=1 /¢ Use modern global access method. q
-ESEI o
27 |ZEE |Bs2 [@2_1B] xzoom [115 =] ¢ GraphOi} : Graph
) elpdate; Silent 1 A4 building window...
22Tz Graph0:sincl,sinc2 Display Aw=(20,1 32,3?9,2?8_)_s_i|jcl_,_sln_c_2\

ModifyGraph chG(B:'_,'—:_ e ProcO

ModifyGraph models

Comnpletely Orthogonal | ModifyGraph market #pragma riGlobals=1 /7 Use modern glohalq
ModifyGraph 1Styled)

ModifyGraph mskip{ Function Raygun(f,c,a,dexzm,xx)

ModifyGraph mirror Yariable f,c,a,dc,xzm xx

Label bottorn ™ "

O.F (Templatec w] [Frg ~ Yariabls val

WA= wEm

| Oy O) TableD:sincl.xd,sinc2 3 120 it T,);l;_ac)

[i else
| | - | “zl val= a*sin (x-o) A7 De-c) /f)

Point| sinci.x sincl.d since endif
u] u] 1.0466 0.3964 | val+=de Y
1 = 1.02467 0.4575) A RaXA] L. Tl | R /
! z el atal ayoutD:T{[() 7 [Templates w | [Procedures § P
3 B 0.923607 0.5604 q
4 g 0.645162 05994 o
g g 0.7535E nez7a s 4,
L] 12 0.660963 0.6450 7) 4

(= Ry =) i

THESE two curves show the superior calibration of our newest
Completely Ort

Paly-phasic Modulating Ray Gun: 0_8__

0.4
Completely Orthogonal ! E . - l y
0.8 o _ no- b
o — singl b
ek @ sineZ [Left: 1200 [Top:z0d4 Wl)4 » 2
o Pt S X e M O & Ray Gun Calibration Experiment
: ShowTools m
T T T T T T T oDrawText 0.305439,0.153546,"Completely Orthogonal 1"
0 20 40 &0 &0 too o 1z0 oDawindow #F Procl a
. wnew panel]
Calibration date: Thursday, October 28, 1993, 3:57:54 PM A | | sSetdxis/h 7
+ |2
: 4
BN 1© KIS -

The command window

See the section Chapters About Specific Windows on page I1-70.

Igor extensions may add other windows to Igor. For example, the Data Browser window, which lets you
see what data exists in the current experiment, is added by the Data Browser extension.

The Target Window

Igor commands and menus operate on the target window. The target window is the top graph, table, page
layout, notebook, control panel or XOP target window. The term “target” comes from the fact that these
windows can be the target of command line operations such as ModifyGraph, ModifyTable and so on. The
command window, procedure windows, help windows and dialogs can not be targets of command line
operations and thus are not target windows.

Prior to version 4, Igor attempted to draw a special icon to indicate which window was the target. However,
this special target icon is no longer drawn because of operating system conflicts.

The menu bar changes depending on the top window and the target window. For instance, if a graph is the
target window the menu bar contains the Graph menu:

I1-53

Chapter lI-4 — Windows

GraphoO is the target window,
even though the command
window and the Using Igor
help window are in front of it.

ltems in the Graph menu will affect GraphO.

E 8’ Igor Pro File Edit Data Analysis Macros Windows Graph Misc Help
000 Graph0:jack Help Browser
1o ind Help | Search Igor Files | Manual | Support
Subtopics

0s k
at Work on Funct.

intial Equations
oo on Roots m
a and Maxima of ..

Iterative Fitting
Initial Guesses
Termination Criteria
Errors in Curve Fitting

05 Data for Curve Fitting
S0 T T T
o000 Curve Fitting.ihf amming
— - - Aons
parameters” to talk about the values that you pass to Igor operationis =
[Jing
= Overview of Curve Fitting ing Terminology 'Y (" Show Selected Topic)
f C Fittil
In curve fitting we have raw dats and a function with unknown cosffic . J"e 'h'"g el
walues for the coefficients such that the function matches the raw dat [19.UsIna the Curve
"best” values of the coefficients are the ones that minimize the value| = ¢
square is defined as: |+ DS UL
&
—y.2 = -
2(3' 3'1) 0 Untitled
G #Make jack=sin(x/8) m
where ¢ 13 a fitted value for a given point, i 0 7PI%Y Jek
i an estimste of the standard deviation for
The si mplest case is fitting to a straight line: 44 4
reason to believe that our dats should fall on a9 v
and 4 that best match our dsta 7
[Ba | (& | [/

The menu bar changes to contain menus that apply to the target window, but you may type any command
into the command line, including commands that do not apply to the target window. Igor will apply the
command to the top window of the correct type.

For instance, in the example above, you could type a ModifyTable command while Graph0 was the target
window. Igor will apply the ModifyTable command to the top table, if there is one.

Sometimes the top window isn’t a target window, but it causes the menu bar to change. To continue our
example, if at this point you were to bring a procedure window to the top, the graph would still be the target
window, but the Graph menu would be replaced with the Procedure menu. Menu items chosen from the
Procedure menu apply to the top procedure window, but typed commands like AppendToGraph myWave
or DoWindow will still affect the target window, GraphO.

Iltems in the Procedure menu will affect the Procedure window.

GraphO is the target ——

window, even though the
command window and the
main procedure window
are in front of it.

Commands typed here
will affect GraphO, the
target window.

Igor Pro File Edit Data Analysis Macros Windows Procedure Misc Help
o066 Graph(:jack
1.0
05 /\
o6 Procedure
oo #pragma rtGlobals=1 ¢/ Use modern global acesss method m
Window GraphO(} : Graph
o5 Pauselpdate; Silent | #7 building window...
Display /w=(3,44,398,252) jack
EndMacro
1o
0 20 P
v
[0.7 [Templates v) [Frocedures w [&] sy
000 Untitled)
*lake jack=sin(x/8) n
*Display jack L
.
v
{2
[#

Window Names and Titles

Each graph, table, page layout or panel has a title and a name.

The title is what you see at the top of the window frame and in the Windows menu. Its purpose is to help
you visually identify the window, and is usually descriptive of its contents or purpose.

The window name is not the same as the title. The purpose of the name is to allow you to refer to the window
from a command, such as the DoWindow or AppendToGraph operations.

I1-54

Chapter II-4 — Windows

When you first create one of these windows, Igor gives it a name like Graph0, Table0, Layout0 or Panel0,
and a title based on the name and window contents. You can change the window’s title and name to some-
thing more descriptive using the Window Control dialog (Windows—Control submenu). Among other
things, it renames and retitles the target window.

Here we are about to change the title of the window named Layout0:

Window Control

WWindow Tite: | kyCooll ayout

Window Marme: | Layout
[] Create window tMacra

Style Mame: | Layout0Style
[] Create Style Macro

Davvindaw T LayoutO,"hiy Cooll sy out™

| Doit | [ToCmdlire | [ToCip | [Help | [Camcel |

The Window Control dialog is also a good way to discover the name of the top window, since the window
shows only the window title.

The command window, procedure windows, and help windows have only a title. The title is the name of
the file in which they are stored. These windows do not have names because they can not be affected by
command line operations.

In summary, you set the title of windows in various ways:

Window Type How Titled Has Window
Name?

Graphs, tables, page Igor initially assigns a title based on the window name and Yes

layouts, notebooks content. You can retitle these windows with the Window

and panels Control dialog or the DoWindow/T command.

Command window Initially “Untitled”, it takes on the file name of saved experiment. No

Built-in procedure Always titled “Procedure”. No

window

Auxiliary procedure Titled when created, they take on the file name if saved as a file. No
windows

Igor Help windows Same as the Igor help file. No

Allowable Window Names

A window name is used for commands and therefore must follow the standard rules for naming Igor objects:
¢ The name must start with a letter.

* Additional characters can be alphanumeric or the underscore character.

* No other characters, including spaces, are allowed in standard Igor object names.

* No more than 31 characters are allowed.

® The name must not conflict with other object names (you see a message if it does).

For more information, see Object Names on page III-411.

II-55

Chapter lI-4 — Windows

The Open File Submenu

The File menu contains the Open File submenu for opening an Edit Data Analysis Macros Windows

existing file as a notebook, Igor help window, or procedure New Experiment %N
Open Experiment... %0

window. Save Experiment %S
Save Experiment As...
Save Experiment Copy...

Revert Experiment...

When you choose an item from the submenu, the Open File
dialog appears for you to select a file.

Procedure...
Notebook...
Help File...

The Windows Menu

You can use the Windows menu for making new windows, and for showing, arranging and closing (either
hiding or “killing”) windows. You can also execute “window recreation macros” that recreate windows
that have been killed and “style macros” that modify an existing window’s appearance.

Making a New Window

You can use the various items in the Windows—New submenu

Misc Debug Help

to create new windows. New Graph...
New Table...
. New Layout...
The menu items that end with “...” invoke dialogs which Notebook...
. | Procedure...
produce commands that Igor executes to create the windows. e : BW | pono
. . . Send To Bac #E
These dialogs are explained in the chapter about the corre- Bring Ta Front QRE | Category Plot...
: . Show > Contour Plot...
Spondlng Wll’ldOW. Hide > Image Plot...
Control » 3D Plots »
Packages >
Help Browser

You can type these commands yourself directly in the command line. For example,

Display yData vs xData
creates a graph of the wave named yData on the Y axis, versus xData on the X axis.

You can create a new window by selecting the name of a window recreation macro from the Windows
menu. See Window Macros Submenus on page II-60.

You can also create a window using the File—+Open File submenu.

Activating Windows

To activate a window, choose an item from Windows menu or from the Help Windows, Procedure Win-
dows, Graphs, Tables, Layouts, Other Windows, or Recent Windows submenus in the Windows menu.

The Recent Windows submenu shows windows recently activated. This information is saved when you
save an experiment to disk and restored when you later reopen the experiment.

If you press Command (Macintosh) or Ctrl (Windows) while clicking the menu bar, a temporary Recent
Windows menu will be accessible from the main menu bar. This shortcut is intended to save you the trouble
of navigating through the Windows menu to the permanent Recent Windows submenu.

By default, just the window’s title is displayed in the Windows menu. You can choose to display the title or
the name for target windows using the Windows Menu Shows popup menu in the Misc Settings category
of the Miscellaneous Settings dialog.

Showing and Hiding Windows
All built-in window types and some XOP window types can be hidden.

II-56

Chapter II-4 — Windows

To hide a window, press Shift and choose Windows—Hide or use the keyboard shortcut Command-Shift-
W (Macintosh) or Ctrl+Shift+W (Windows). You can also hide a window by pressing Shift and clicking the
close button.

You can hide multiple windows at once using the Windows—Hide submenu. For example, to hide all
graphs, choose Windows—Hide—All Graphs. If you press Shift while clicking the Windows menu, the
sense of the menu items changes. For example, Hide—All Graphs changes to Hide—All Except Graphs.

The command window is not included in mass hides of any kind. If you want to hide it you must do so
manually.

Similarly, you can show multiple windows at once using the Windows—Show submenu. For example, to
show all graphs, choose Windows—Show—All Graphs. If you press Shift while clicking the Windows menu,
the sense of the menu items changes. For example, Show—All Graphs changes to Show—All Except Graphs.

The Show All Except menu items do not show procedure windows and help files because there are so many
of them that it would be counterproductive.

The Windows—Show—Recently Hidden Windows item shows windows recently hidden by a mass hide
operation, such as Hide—All Graphs, or windows recently hidden manually (one-at-a-time using the close
button or Command-Shift-W or Ctrl+Shift+W). In the case of manually hidden windows, “recently hidden”
means within the last 30 seconds.

XOP windows do participate in Hide All XOP Windows and Show All XOP Windows only if XOP program-
mers specifically support these features.

Closing a Window

You can close a window by either choosing the Close item or by clicking in the window’s close button.
Depending on the top window’s type, this will either kill or hide the window, possibly after a dialog asking
for confirmation.

Killing Versus Hiding

“Killing” a window means the window is removed from the experiment. The memory used by the window
is released and available for other purposes. The window’s title is removed from the Windows menu.
Killing a window that represents a file on disk does not delete the file. You can also kill a window with a
DoWindow/K winName command.

“Hiding” a window simply means the window is made invisible, but is still part of the experiment and uses
the same amount of memory. It can be made visible again by choosing its title from the Windows menu.

The command window and the built-in procedure window can be hidden but not killed. All other built-in
windows can be hidden or killed.

When you create a window from a procedure, you can control what happens when the user clicks the close
button using the /K=<num> flag in the command that creates the window.

You can hide a window programmatically using the DoWindow/HIDE=1 operation. To show a hidden window
without activating it, use DoWindow/HIDE=0. To show the window and activate it, use DowWindow/F.

Saving the Window Contents

Notebooks and procedure windows can be saved either in their own file, or in a packed experiment file with
everything else. You can tell which is the case by choosing Notebook—Info or Procedure—Info. When you
kill a notebook or a procedure window that contains unsaved information, a dialog will allow you to save
it before killing the window.

Graph, table, panel and page layout windows are not saved as separate files, and are lost when you kill
them unless you save a window recreation macro which you can execute to later recreate the window.
Killing these windows and saving them as window recreation macros (stored in the built-in procedure

I1-57

Chapter lI-4 — Windows

window) frees up memory and reduces window clutter without losing any information. You can think of
window recreation macros as “freeze-dried windows”.

This table shows how windows are hidden, killed, and saved:

Window Type Hideable? Killable? Save Recreation Macro? Stand-Alone File?
Graphs, Tables Yes Yes Yes Yes

Layouts, Panels Yes Yes Yes No

Main procedure window Yes No No i

Help Browser Yes No No No

ﬁ:}x};lez gg‘cl)vcsedures, Notebooks, Yes Yost No Yes

Command window No No No No

* The SaveGraphCopy operation (page V-520) and the SaveTableCopy operation (page V-527) can be
used to save a graph or table, along with all associated waves, as a stand-alone experiment file.

1t The main procedure window is stored as a separate file in the home folder if the experiment is saved in
unpacked format, or within the experiment file if the experiment is saved in packed format.

1 The only way to kill a help window is to press Option (Macintosh) or Alt (Windows) when clicking the
close button, or by pressing Command-Option-W (Macintosh) or Ctrl+Alt+W (Windows).

Close Window Dialogs
When you close a graph, table, layout or control panel, Igor presents a Close dialog.

Saves (or replaces) a'recreatlon P ——
macro and kills the window.
Save window recreation macro as ‘Graphﬂ\ ———— Name of the
recreation macro.

Kills the window without

saving a recreation macro. B % Help

Cancel

If you click the Save button Igor creates a window recreation macro in the main procedure window. It sets
the macro’s subtype to Graph, Table, Layout or Panel so the name of the macro appears in the appropriate
Macros submenu of the Windows menu. You can recreate the window using this menu.

: Graph subtype identifies window recreation

macro named GraphO as a graph macro. m
New Graph...
| |
866 Procedure New Table...
#pragma riGloba\s=1 /¢ Use modern global access method. m
window GraphO(} : Graph » Graph Macros ~ P Graph0
Pauzelpdate; Silent 1 A7 building window... . ——
Display /W=(20,132,579,278) sine1 sinc2 Teliafo L L
ModifyGraph chRGE={ 43151 43152 5535} . Layout Macros >
ModifyGraph mode{sinc2) =< . Panel Macros »
ModifyGraph marker (sinc2i=19 v
[7 [Templates w | [Procedures w) 18 <[> o

If you don’t plan to use the window again, you should click the No Save button and no window recreation
macro will be created.

If you have previously created a recreation macro for the window then the dialog will have a Replace button
instead of a Save button. Clicking Replace replaces the old window recreation macro with a new one. If you
know that you won’t need to recreate the window, you can delete the macro (see Saving a Window as a
Recreation Macro on page 1I-59).

When you close a notebook or procedure window (other than the built-in procedure window), Igor pres-
ents a “hide or kill dialog”.

I1-58

Chapter II-4 — Windows

Saves the file (if any) and removes | Close Notebaok Window
window from the experiment. ——— — The Notebook contents are
Modifiedt: Mo stored in the experiment
file, not in a separate
Removes the window from the | notebook file.
experiment without saving. — 1 il |
Just hides the window. - Hicle | Cancel

Macintosh: When the Close Window dialog is showing, you can press Option to make the Kill button the default.
The Kill button will become highlighted while the “Save and then kill” button will become normal. You can then
press Return or Enter to kill the window. Similarly, press Shift to make the Hide button the default button.

To hide a window, press Shift while clicking the close button. To kill a graph, table, layout, or control panel
without the Close dialog, press Option (Macintosh) or Alt (Windows) while clicking the close button.

By specifying/K=<num> for the NewNotebook, Layout, Display, and NewPanel operations, you can
modify this behavior.

Saving a Window as a Recreation Macro

When you close a window that can be saved with a recreation macro, Igor offers to create one by displaying
the Close Window dialog. Igor stores the window recreation macro in the main procedure window of the
current experiment. The macro uses much less memory than the window, and reduces window clutter. You
can invoke the window recreation macro later to recreate the window. You can also create or update a
macro with the Window Control dialog.

The window macro contains all the necessary commands to reconstruct the window provided the underly-
ing data is still present. For instance, a graph recreation macro contains commands to append waves to the
graph, but does not contain any wave data. Similarly, a page layout recreation macro does not contain
graphs or tables (nor the commands to create them). The macros refer to waves, graphs and tables in the
current experiment by name.

Here is how you would use recreation macros to keep a graph handy, but out of your way:

666 Graph0:sinc1,sinc2 Choosing Close or clicking the close button...

Completely Orthogonal |

Close Window

...summons the Close Window dialog.
Save window recreation macro as: Craph0

€ save)

(Nosave) (__Help) (Cancel) Clicking Save...

06 Procedure

#pragma riGlobals=1 A4 Use modern global access method. m
Window GraphOf) : Graph ...saves a window recreation macro for

Pauszellpdate; Silent 1 # building windaw... the graph in the main procedure window.
Display /wW={20,132,379,278) sinc1,3inc2

ModifyGraph chRGB={ 49151,49152,65535)

ModifyGraph mode{sinc2) =<

ModifyGraph marker (sinc2)=19

ModifyGraph 1Stylelsinc2)=2

ModifwGraph makip{sinc2) =8

ModifyGraph mirror=2 -

Label bottor ™ " *

Legend/d/M=text0 /Y =23.08 "hsisinc1d sinc1vrhssine 2y sinc2” v

[7 [Templates w | [Procedurez w) 1 4[> s

I1-59

Chapter lI-4 — Windows

| Windows [

| New Graph... |
New Table...

New Layout... When the graph window is needed again choosing
iy L the macro from the Graph Macros menu runs the
macro that recreates the graph.

Table Macros T
Layout Macros >
Panel Macros >

The window macro is evaluated in the context of the root data folder. This detail is of consequence only to
programmers. See Data Folders and Commands on page 1I-119 for more information.

You can create or replace a window macro without killing the window using The Window Control Dialog
described on page II-62. The most common reason to replace a window macro is to keep the macro consis-
tent with the window that it creates. This is useful if you are about to clone the window, having changed it
since the recreation macro was made.

Notice that the proposed name of the window recreation macro is the same as the name of the saved

window. You can save the window recreation macro under a different name, if you want, by entering the
new name in the dialog. If you do this, Igor creates a new macro and leaves the original macro intact. You
can run the new macro to create a new version of the window or you can run the old macro to recreate the
old version. This way you can save several versions of a window, while displaying only the most recent one.

Window recreation macros stay in an experiment’s procedure window indefinitely. If you know that you
won't need to recreate a window for which a window recreation macro exists, you can delete the macro.

To locate a window macro quickly:

¢ Bring any procedure window to the top, press Option (Macintosh) or Alt (Windows) and choose the
window macro name from the appropriate macro submenu in the Windows menu.

To delete the macro (if you're sure you won’t want it again), simply select all the text from the Macro dec-
laration line to the End line. Press Delete to remove the selected text.

See Saving and Recreating Graphs on page II-291 for details specific to graphs.

Window Macros Submenus

The Windows menu has hierarchical menus containing graph, table, page layout and panel recreation
macros. These menus also include graph, table or page layout style macros.

: Graph subtype identifies window recreation macro named GraphO as a graph-related macro.

ene | Procedure l:mm
* =
pragma riGlobals=1 | ¢ Use madern qlobal access method. m | New Graph... |
‘window GraphO({} : Graph New Table...
Pauselpdate; Silent 1 A building swindow. .. New Layout...

Display M =(20,132,379,278) sinc1,sinc2
FodifyGraph chRGE=(43 151,49152 65535)
ModifyGraph modedsing2) =4

ModifuGraph marker{sinc2}=19

ModifyGraph 15tyledsine2) =2 Graphs »
ModifyGraph mskip(sine2) =2
ModifyGraph mirror=2 Tables L.
Label bottarn " Layouts b
Legend/AJAN=text0/¥=23.08 "naisine]} sinc1hrihaisine2) sinc2” Other Windows »
SetDrawlayer UserFront
SetDrawEny fillpat= 0 -
DrawDval 0.0159362549500797,0.107643137254902,0.239043824701 19 Graph Macros b GraphO N
SetDrawEny arrows= 2 Table Macros > GraphOStyle
Drawline 0.235059760956175,0.343137254901961,0.3864541 83266932
SetDrawEny fsize= 10 Layout Macros >
DrawText 0.305439,0.153546, "Campletely Orthogonal 1” Panel Macros »
EndMacro
Proc GraphOStyle() : GraphStyle — :GraphsStyle subtype identifies window style macro
PauselUpdate; Silent 1 A modifying window... * _
HModi fyGraph/Z chRGE={49151,49152,65535) + named GraphOStyle as a graph-related macro.
7 {7 [Termplstes w | [Procedures w | [Compile | | 59 ey

Window recreation macros are created by the Close Window and Window Control dialogs, and by the DoWin-
dow/R command. Style macros are created by the Window Control dialog and the DoWindow/R/S command.

I1-60

Chapter II-4 — Windows

Igor places macros into the appropriate macro submenu by examining the macro’s subtype. The subtypes
are Graph, Table, Layout, Panel, GraphStyle, TableStyle and LayoutStyle. See Procedure Subtypes on page
IV-175 for details.

When you choose the name of a recreation macro from a macro submenu, the macro runs and recreates the
window. Choosing a style macro runs the macro which changes the target window’s appearance (its “style”).

However, if a procedure window is the top window and you press Option (Macintosh) or Alt (Windows) and
then choose the name of any macro, Igor displays that macro but does not execute it.

The Name of a Recreated Window

When you run a window recreation macro, Igor recreates the window with the same name as the macro
that created it unless there is already a window by that name. In this case, Igor adds an underscore followed
by a digit (e.g. _1) to the name of the newly created window to distinguish it from the preexisting window.

For example, this figure shows the result of running a graph recreation macro twice. There was no graph
named Graph0O when we started:

Created when Graph0 was chosen from
the Graph Macros menu the first time.

| Windows

New Graph...
New Table...
New Layout...

®0O6 Graph0:sincl,sinc2

Completely Orthogonal !

LR

04w

00+ R e e

0 20 40 60 0 100 120 New

®e0e Graph0_1:sincl,sinc2 = = L

Graph Macros GraphOQ |

»
Completely Orthoganal | Table Macros >
Layout Macros
Panel Macros

»
»

.| —— Created when GraphO was chosen from
the Graph Macros menu the second time.

A

Changing a Window’s Style From a Macro

When you run a style macro by invoking it from the Windows menu, from the command line or from
another macro, Igor applies the commands in the macro to the top window. Usually these commands
change the appearance of the window. For example, a graph style macro may change the color of graph
traces or the axis tick marks.

Style macros are used most effectively with graph windows. For more information, see Saving and Recre-
ating Graphs on page 1I-291 and Graph Style Macros on page 11-291.

II-61

Chapter II-4 — Windows

The Window Control Dialog

Choosing Control->Window Control brings up a dialog you can |[[F crash Misc Debug Help
use to change the top window’s title and name, and create or L
update its recreation and style macros. You can access this dialog =~ new Layour...

quickly by pressing Command-Y (Macintosh) or Ctrl+Y (Win- e g
Close... EW

dows). Send To Back 3BE
Bring To Front 1 #%E
Show
Hide
Control

Here we are using the dialog to change the window named
Layout0 to have a new title of “My Cool Layout”.

Haln Rraucar

[)

Window Control ﬁ

Window Title: |hf1},-f Cool Layou

Wylindow MName: |Layu:uut[l
[Create 'Window bacro

Style MName: |Layu:|utEISter
| Create Style Macro

DoWindowT Layoutd "My Caool Layout”

Dol To Cmd Line Tao Clip Help Cancel

You can also change the window’s name. The window name is used to address the window from command
line operations such as DoWindow and also appears in the macro submenus of the Windows menu.

If the window name matches the name of an existing a window or style macro, the checkboxes will change
to Update Window Macro and Update Style Macro.

The dialog may look a little different for some window types. For instance, panels don’t have style macros,
so for panel windows the Create Style Macro item will be missing.

Similarly, notebooks can not be saved as macros, so both the Create Window Macro and Create Style Macro
items will be missing:

I1-62

Chapter II-4 — Windows

-

Window Control ﬁw

Window Title: - Natebook(]

YWindow MName; |N|:|teb|:u:|k|]

Help Cancel

For more about names and titles, see Window Names and Titles on page II-54. Also see Saving a Window
as a Recreation Macro on page II-59 for a discussion of window recreation macros, and see Graph Style
Macros on page II-291 for details on style macros.

Arranging Windows

You can tile or stack windows by choosing the appropriate items from the Control submenu in the
Windows menu.

New Graph...

New Table...

New Layout...

New >
Close... BW |

Control (3 > Window Control... ®Y

Help Browser 1
Help Windows > | [Stack
|| Tile or Stack Windows...

Command Window 3] |
Procedure Window 38M Move to Preferred Position

Move to Full Size Position

Graphrs L Retrieve Window
etz || Retrieve All Windows
Layouts |
Other Windows » | Send Behind ®E
8 06 GraphB:ja..... 000 CraphE:ja...- ﬁ jaNal CranhQ:iacoues
1A A Cranhl:iacoues
1o 1o pieEANA] CGranh?iacaues
05 05 0080 Graph3:jacques
0o 00 10—
-03 -03
-1.0 -1.0
a 100 il 100 85
P £
T
Y Y YCraphlja..| | O O O Craph0ja... 0.0
1.0 1.0
05 05 -0.5
oo oo
-03 -0.3 o
o o -1 T T T T T T
’ ’ -1 u] 20 40 &0 g0 100 120
u} 100 o 100 - Y

You can customize the behavior of the Tile and Stack items using the Tile or Stack Windows dialog.

You can also move windows around using the MoveWindow, StackWindows, and TileWindows commands.

I1-63

Chapter lI-4 — Windows

The Tile or Stack Windows

Dialog

The Tile or Stack Windows dialog is useful for tiling a few windows or even for setting the size and position

of a single window.

Each checkbox selects all windows of that type.

Tile or Stack Windows

Tile (Or StaCk) —T—— ‘Windows to Arrange

windows selected | [Grapha

Graph3
here, too. Grapr2
GraphD
Tabled
Graphl

[~ Command Window Grout. |8

[Procedure Window (" Stack

[~ All graphs @ Tile
[v Alltables
[~ Alllayouts
Columns: [Auto
[~ Allnotebooks
[~ All procedure windows SetTiling Area...

[~ All help windows

[~ Capture as preffor Tile' menu command

|T|\eWmduw5fO=2 Graphd,Graph3,Gra)

Do lt

To Cmd Line |

ph0)

Tocip |

Help Cancel

Select this if you want subsequent selections of the Tile

menu

item to tile the selected window types.

Keep this much space between tiled

———— windows, in points.
—— Choose Stack or Tile windows here.

Ri Auto
- >—— Auto or 0 chooses the number of rows

and columns to fit the tiling area.

Click to get the Window Tiling
Area dialog.

Select individual windows from the Windows to Arrange list, and entire classes of windows with the checkboxes.

If you want subsequent selections of the Tile (or Stack) menu item to stack the same types of windows with
the same rows, columns, grout, tiling area, etc., you should select the “Capture as pref” checkbox. Windows
selected in the Windows to Arrange menu aren’t remembered by the preferences: only the window type
checkboxes. There are separate settings and preferences for Stack and for Tile.

Notice that although the TileWindows and StackWindows operations can tile and stack panels, panels
don’t show up here because they don’t resize very well.

The Window Tiling Area subdialog specifies the area where tiling and stacking take place.

You can specify the tiling area in o

* By entering screen positions in

ne of four ways:

units of points.

e By dragging the pictorial representation of the tiling area.

¢ Use the default tiling area by cl

icking the “Use default area” button.

* By positioning any nondialog window before you enter the dialog, and clicking the “Use top win-

dow” button.

This rectangle

The top,left corner has coordinates of 0,0.

Window Tiling Area

. Drag the body to reposition
the tiling area.

- Drag the square handles to
resize the tiling area.

— Dark gray area indicates
where the desktop is.

indicates the '
tiling area.
Detautt Comimand Window
Left ‘4| Top ‘21
Right: ‘553 Eottom! ‘324 Cancal
L Use default area ‘ Use top window ‘

The default area is the largest rectangle
on the main screen above or below the
default Command Window position.

I1-64

Change the position and size of the Default Command Window with the
Capture Prefs item in the Command Buffer submenu of the Misc menu.

Chapter II-4 — Windows

Window Position and Size Management

There are four items in the Control submenu of the Windows menu that help you manage the position and
size of windows.

| Window Control... 8y

Tile
Stack
Tile or Stack Windows. ..

Position and size from preferences.

Move to Preferred Position . . .
Move to Full Size Position Setssize to optimally display

Retrieve windows that are partly or Retrieve Window the window contents.
completely off-screen. [Remeue All Windows

Send Behind ¥E

Move to Preferred Position

Moves the active window to the position and size determined by preferences. For each type of window, you
can set the preferred position and size using the Capture Prefs dialog (e.g., Capture Graph Prefs for graphs).

Shortcut for Windows: Press Alt and click the maximize button.

Move to Full Size Position

Moves and sizes the active window to display as much of the content as practical. On Macintosh, this is the
same as clicking the zoom button. On Windows, the size is limited to the size of the frame window.

Shortcut: Press Shift-Option (Macintosh) or Shift+Alt (Windows) and click the maximize button.

Retrieve Window

Moves the active window and sizes it if necessary so that all of the window is visible.

Retrieve All Windows

Moves all windows and sizes them if necessary so that all of each window is within the screen on Macintosh
or within the frame on Windows. This is often useful when you open an experiment that was created on a
system with a larger screen or Windows frame than yours.

Send to Back — Bring to Front

The Send to Back item in the Windows menu sends the top window to the bottom of the desktop, behind
all other windows. This function can also be accessed by pressing Command-E (Macintosh) or Ctrl+E (Win-
dows). After sending a window behind, you can bring it to the front by choosing Bring to Front or by press-
ing Shift-Command-E (Macintosh) or Ctrl+Shift+E (Windows). You can also press Command-E or Ctrl+E
repeatedly to cycle through all windows.

Send to Back is handy to use in conjunction with Command-J (Macintosh) or Ctrl+] (Windows) which brings
the command window to the top of the desktop. You can press Command-] or Ctrl+] to bring the command
window to the top, enter a command, and then press Command-E or Ctrl+E to get the command window
out of the way again.

Igor has a nifty feature that comes in handy if you have many windows tiled such that some are completely
behind others. If you press Option (Macintosh) or Alt (Windows) and choose Send to Back or press Command-
Option-E (Macintosh) or Ctrl+Alt+E (Windows), any window that is completely visible is sent to the back.

For example, imagine that you have eight graphs. You can tile them into two planes of four graphs per plane
using the Tile or Stack Windows dialog, or with the command: TileWindows/0=1/A=(2,2). Now, press-
ing Command-Option-E or Ctrl+Alt+E sends the top four graphs behind, revealing the bottom four graphs.

You can also send a window to the back with the Dowindow/B command and bring it to the front with the
DoWindow/F command.

I1-65

Chapter lI-4 — Windows

Text Windows

Igor Pro displays text in procedure, notebook, and Igor help windows as well as in the command and
history areas of the command window. This section discusses behavior common to all of these windows.

Executing Commands

You can execute commands selected in a notebook, procedure or help window by pressing Control-Enter
or Control-Return. You can also execute selected commands by Control-clicking (Macintosh) or right-click-
ing (Windows) and choosing Execute Selection.

For more on this, see Notebooks as Worksheets on page I1I-5.

Text Window Navigation

The term “keyboard navigation” refers to selection and scrolling actions that Igor performs in response to
the arrow keys and to the Home, End, Page Up, and Page Down keys. Macintosh and Windows have dif-
ferent conventions for these actions in windows containing text. You can use either Macintosh or Windows
conventions on either platform.

By default, Igor uses Macintosh conventions on Macintosh and Windows conventions on Windows. You
can change this using the Keyboard Navigation menu in the Misc Settings section of the Miscellaneous Set-
tings dialog. If you use Macintosh conventions on Windows, use Ctrl in place of the Macintosh Command
key. If you use Windows conventions on Macintosh, use Command in place of the Windows Ctrl key.

Macintosh Text Window Navigation

Key No Modifier Option Command

Left Arrow Move selection left one Move selection left one Move selection to start of
character word line

Right Arrow Move selection right one Move selection right one Move selection to end of
character word line

Up Arrow Move selection up one line Move selection up one Move selection up one

Down Arrow

Home
End
Page Up

Page Down

Move selection down one
line

Scroll to start of document
Scroll to end of document
Scroll up one screen

Scroll down one screen

paragraph

Move selection down one
paragraph

Scroll to start of document
Scroll to end of document
Scroll up one screen

Scroll down one screen

screen

Move selection down one
screen

Not used
Not used
Not used
Not used

Windows Text Window Navigation

Key No Modifier Ctrl

Left Arrow Move selection left one character Move selection left one word
Right Arrow Move selection right one character Move selection right one word
Up Arrow Move selection up one line Move selection up one paragraph

Down Arrow Move selection down one line Move selection down one paragraph

Home Move selection to start of line Move selection to start of document

End Move selection to end of line Move selection to end of document

I1-66

Chapter II-4 — Windows

Windows Text Window Navigation

Key No Modifier Ctrl
Page Up Scroll up 1 screen Scroll up 1 screen
Page Down Scroll down 1 screen Scroll down 1 screen

Finding Text in the Active Window
You can access the Find Text dialog via the Edit menu or by pressing Command-F (Macintosh) or Ctrl+F

(Windows). The Find Text dialog is available for help, procedure, and notebook windows, for the command
line and the history area, and for some XOP windows.

You can search for the next occurrence of a string (Edit—Find Selection) without using the dialog by selecting the
string and pressing Command-Control-H (Macintosh) or Ctrl+H (Windows). (Unreformed old-timers can change
the Macintosh key combination to its original setting of Command-H using the Miscellaneous Settings dialog.)

After doing a find, you can search for the same text again by pressing Command-G (Macintosh) or Ctrl+G
(Windows) (Find Same in the Edit menu). You can search for the same text but in the reverse direction by
pressing Command-Shift-G (Macintosh) or Ctrl+Shift+G (Windows).

You can abort a find by clicking the Stop button in the Find Text dialog or by pressing Command-period
(Macintosh) or Ctrl+Break (Windows).

Find and Replace
To find and replace:

Move the selection to the top of the active window.

Use Edit—Find to find the first instance of the target string.

Manually change the first instance, then copy the new text to the Clipboard.
Press Command-G (Macintosh) or Ctrl-G (Windows) to find the next occurrence.
Press Command-V (Macintosh) or Ctrl-V (Windows) to paste.

Repeat steps 4 and 5 until done.

SR e

Finding Text in Multiple Windows

You can perform a Find on multiple help, procedure and notebook windows at one time using the following
procedure.

1. Open a help, procedure or notebook window.

2. Press Command-F (Macintosh) or Ctrl+F (Windows) or choose Find from the Edit menu.
3. Choose Multiple Windows from the pop-up menu in the Find dialog.

4. Enter the text to find and click Find.

When you follow this procedure, the Find Text dialog looks something like this:

I1-67

Chapter lI-4 — Windows

-

Find Text W

Find | in [Multiple Windows v
| Search Backwards [Case Sensitive
[« [whaole Word
Cancel

Tip: After daoing afind, use Cirl-G to find again, Shift-Ctrl-G to find again backwards. Far
find and replace. use Cirl-G. Cirl-y.

Search

“Windows To Be Searched
v Al Help Windows

Analysis.ihf -~
[All Procedure Windows Curve Fitting.ihf

Dialog Help.ihf
[Al Motebook Windows Errars.ihf

Graphics. ihf

lgor Reference. ihf

Help lgor Shortcuts.ihf

Image Processing.ihf
Frograrmrming.ihf

The windows that will be searched appear in the list, in the order in which they will be searched. You add
windows to the list by selecting one of the checkboxes to the left of the list. The search is done from the top
to the bottom of the list, or from the bottom to top if you have selected Search Backwards.

The selection in the list indicates the file to be searched next. You can change the selection by clicking the
list or using the arrow keys. However, this is usually not necessary.

You can abort a find by clicking the Stop button in the Find Text dialog or by pressing Command-period
(Macintosh) or Ctrl+Break (Windows).

When you turn multiple window find on, it stays on until you turn it off, by choosing Active Window Only
from the pop-up menu. The setting of this pop-up menu affects not only Find but also Find Same and Find
Selection. These last two operations do not display the Find Text dialog. To avoid confusion, use Find if you
are unsure whether multiple window find is off or on.

The multiple window find may sometimes cause surprising behavior. For example, you may expect that the
search will start with the active window. However, when doing a multiple window find, this is not the case.
The search starts with the item highlighted in the list. Also, the search does not start from the selection in that
window but rather from the top of the window, or from the bottom if you have selected Search Backwards.

When you click Find, Igor searches the windows in the list. When it finds the first occurrence of the target
string, it closes the dialog and displays the found text. At this point, you can do a Command-G (Macintosh)
or Ctrl+G (Windows) or choose Find Same from the Edit menu, to find the next occurrence of the target
string. When you do a Find Same, the search starts from the selection in the window in which the target
string was last found. This will normally be the active window but not if you activated another window
after the last find.

While you are doing a multiple-window find you can, as in a single window find, press Command-Shift-G
(Macintosh) or Ctrl+Shift+G (Windows) to search in the opposite direction (e.g., backwards if you were
searching forwards). This provides a handy way to move quickly back and forth between two occurrences
of the search string.

I1-68

Chapter II-4 — Windows

If you do a find after finding the last occurrence of the search string, Igor will beep, indicating that there are
no more occurrences. At this point, if you want to go back to the preceding occurrence, you may need to
press Command-Shift-G or Ctrl+Shift+G twice. The reason for this is that, after hitting the end of the list of
windows to be searched, when you search backwards, Igor starts from the end of the list and finds the last
occurrence again.

If you open or kill a window of a type that is to be searched, Igor rebuilds the list of files to be searched and
resets the multiple-window find to the top of the list (or bottom if you are searching backwards). Igor also
resets the multiple-window find when you change any of the settings in the Find Text dialog.

If you choose Find Selection from the Edit menu or press Command-H or Ctrl+H, Igor resets the find mode
to active window only, enters the selected text as the search string, and then does the find. If what you really
wanted was to do a multiple-window find, then after doing the Find Selection, press Command-F or Ctrl+F
to active the Find Text dialog, choose Multiple Windows from the pop-up menu, and then click the Find
button. This will start the multiple window find from the start of the list.

You can use the Igor Help Browser to search in multiple files, including files that are not open in your
current experiment. See Igor Help Browser on page II-6 for further details.

Text Magnification
You can magnify the text in any window to make it bigger or smaller to suit your taste.

In help windows, procedure windows, plain text notebooks, and formatted text notebooks, you can use the
magnifying glass icon in the bottom-left corner of the window. You can also use the Magnification submenu
in the contextual menu for the window. To display the contextual menu, Control-click (Macintosh) or right-
click (Windows) in the body of the window.

You can also set the magnification for the command line, history area, and text areas in dialogs such as
Browse Waves and Add Annotation. These areas do not display the magnifying glass icon so you must use
the contextual menu.

You may notice some anomalies when you use text magnification. For example, in a formatted text note-
book, text may wrap at a different point in the paragraph and may change in relation to tab stops. This
happens because fonts are not available in fractional sizes and because the actual width of text does not
scale linearly with font size.

The Fit Width and Fit Page modes are inaccurate because of the availability of integer font sizes only.
However they still may be useful. These modes are based on the available space for printing the document,
which depends on the paper size chosen in the Page Setup dialog and the page margins as set in the Docu-
ment Settings dialog. Because the actual content of the document may be much narrower or much wider
than the available space for printing, these modes may sometimes give unexpected results.

You can set the default magnification for each type of text area by choosing a magnification from the Mag-
nification popup menu and then choosing Set As Default from the same popup menu. Any text areas whose
magnification is set to Default will use the newly specified default magnification. For example, if you want
text in all help files to appear larger, open any help file, choose a larger magnification, 125% for example,
and then choose Set As Default For Help Files. All help files whose current magnification is set to Default
will be updated to use the new default.

The default magnification for the command line and history area controls the magnification that will be
used the next time you launch Igor Pro.

The magnification setting is saved in formatted notebooks and help files only. If you change the magnifica-
tion setting for one of these files and then save and close the file, the magnification setting will be restored
when you reopen the file. For all other types of text areas, including procedure windows and plain text
notebooks, the magnification setting is not stored in the file. If you close and reopen such a file, it will
reopen using the default magnification for that type of text area.

I1-69

Chapter lI-4 — Windows

Window User Data

You can store arbitrary data with a window using the userdata keyword with the SetWindow operation
(page V-549). This is a topic of interest to advanced Igor programmers.

Each window has a primary, unnamed user data that is used by default. You can also store an unlimited
number of different user data strings by specifying a name for each different user data string. The name can
be anything you desire as long as it is a legal Igor name.

You can retrieve information from the default user data with the GetWindow operation (page V-213). To
retrieve any named user data, you must use the GetUserData operation (page V-212).
Following is a simple example of user data using the top window:

SetWindow kwTopWin,userdata= "window data"
Print GetUserData ("","","")

Although there is no size limit to how much user data you can store, it does have to be generated as part of
the recreation macro for the window when experiments are saved. Consequently, huge user data can slow
down experiment saving and loading

User data is intended to replace or reduce the usage of global variables. Named user data is intended for
authors of packages that add features to existing windows. The primary author of a window should use the
default, unnamed user data.

Chapters About Specific Windows

Detailed information about each type of window can be found in these chapters:

Window Type Chapter

Command window Chapter II-2, The Command Window
Chapter IV-1, Working with Commands

Procedure windows Chapter III-13, Procedure Windows

Help Browser Chapter 1I-1, Getting Help

Help windows

Graphs Chapter II-12, Graphs

Tables Chapter II-11, Tables

Layouts Chapter 1I-16, Page Layouts

Notebooks Chapter III-1, Notebooks

Control panels Chapter III-14, Controls and Control Panels

I1-70

Chapter II-4 — Windows

Window Shortcuts

Action

Shortcut (Macintosh)

Shortcut (Windows)

To close a window:

To kill a window with no
dialog:

To hide a window:

To invoke the Window
Control dialog;:

To send the top window
behind all others:

To bring the bottom
window on top of all others:

To send all windows that
are completely visible
behind all others:

To activate a recently
activated window:

To move a window to its
preferred size and position:

To move a window to its
full-size position:

To activate the command
window:

To clear the command
buffer:

To open the built-in
procedure window:

To cycle through all
procedure windows:

To open the Help Browser:

To find a phrase in a text
window:

To find the same phrase
again:

To find the selected phrase:

Click the close button or press
Command-W.

Press Option and click the close
button or press Command-Option-W.

Press Shift and click the close button
or press Command-Shift-W.

Press Command-Y.

Press Command-E.

Press Command-Shift-E.

Press Command-Option-E.

Press Command, click the main menu
bar, and select from the Recent menu.

Click the zoom button.
Press Shift-Option and click the
zoom button.

Press Command-]J.

Press Command-K.

Press Command-M.

Press Command-Option-M.

Press Help or Command-?.

Press Command-F.

Press Command-G. Press Command-
Shift-G to search backward.

Press Command-Control-H.
Press Command-Shift-Control-H to
search backward.

This key combination can be changed
through the Miscellaneous Settings
dialog.

Click the close button
or press Ctrl+W.

Press Alt and dlick the dlose button
or press Ctrl+Alt+W.

Press Shift and click the close button
or press Ctrl+Shift+W.

Press Ctrl+Y.

Press Ctrl+E.

Press Ctrl+Shift+E.

Press Ctrl+Alt+E.

Press Ctrl, click the main menu bar,
and select from the Recent menu.

Press Alt and click the maximize
button.

Press Shift +Alt and click the maximize
button.

Press Ctrl+].

Press Ctrl+K.

Press Ctrl+M.

Press Ctrl+Alt+M.

Press F1.

Press Ctrl+F.

Press Ctrl+G. Press Ctrl+Shift+G to
search backward.

Press Ctrl+H.
Press Ctrl+Shift+H to search backward.

I1-71

Chapter lI-4 — Windows

I1-72

Chapter

OVETVIBW ..ottt a s b s bt a e bsa e 74
Waveform Model of Dataccccovviviiiiiiiiii e 74
XY MOdel Of Data......coouiuimiiiiiiiiiiiiiiiiiii bbb 75
MaKING WAVES ...ttt et 77
WaVE NAMES ...ttt 77
Number of DIMENSIONS ... 78
Number Type and PreCision...........cociiiiiiniicice e 78
Default Wave Properties ...ttt 79
MaKe OPEIation.........couiiiucieiiiicieietcete ettt et 79
Make Operation EXampIesccooviiiiiiiieieiee e 80
Waves and the Miscellaneous Settings Dialogccoceueveiiiieiiiicieice s 80
Changing Dimension and Data SCaling............cccoueueiiiiieieiniii s 80
Date, Time, and Date&Time UNIEScoieiiiiiiieeeicieceeecee ettt et eaeeeteeeeeereesreseaeeeseas 82
Duplicate OPeration ..ot 83
Duplicate Operation EXamples...........cccoiiiiiiiiiiicec s 83
KAIHNE WAVES ..ottt st aeas 84
KillWaves Operation EXamples...........c.couieieieiiiieieiiicieccie et 85
BIOWSING WaVES......cooiiiiiiii st 85
Renaming WaVESc.couoiiiiiiii bt 87
Redimensioning WaVeS..........ccceuiiieieiiiciete ettt 88
INSErting POINES......cooviieieiiiiee e 89
Deleting POINESocuiiiieieiic e 89
Waveform Arithmetic and ASSIGNMENLS.........c.ccccuiiiiiiiiiiiiiiiiceeceee e 90
Indexing and SUDTANGESccccccuriririiiiiiiiiir e 92
Interpolation in Wave ASSIGNMENLES ... 93
LiSts Of VAIUESouceceiiiiiic ettt 93
Wave INTtialiZation ..o 93
Example: Converting XY Data to Waveform Datacccoeuvviininiiinnniiicnncnncnee, 93
Example: Concatenating Waves ... 94
Example: Decomposing Waves ... 94
Example: Complex Wave Calculations ..o 94
Example: Comparison Operators and Wave Synthesis ..., 95
Example: Wave Assignment and Indexing Using Labelsccooviiiiiiiniiiccnee. 95
Mismatched WaVES ..ot 96
NaNs, INFs and Missing ValUes ..o s 96
SEEANGE CASES.....oviniiiiciitct s 97
Wave Dependency FOIMUIASccciiiiiiiiiiicccccc e 97
USINg the Wave INOLE........cccoiiiiii e 97
INtEZET WAVES ...t 98
TOXE WAVES ..ot 98
Programmer INOLES ... s 99

Complete List Of Wave Properties. ...t 99

Chapter II-5 — Waves

Overview

We use the term “wave” to describe the Igor object that contains an array of numbers. Wave is short for
“waveform”. The main purpose of Igor is to store, analyze, transform, and display waves.

Chapter I-1, Introduction to Igor Pro, presents some fundamental ideas about waves. Chapter I-2, Guided
Tour of Igor Pro, is designed to make you comfortable with these ideas. In this chapter, we assume that you
have been introduced to them.

This chapter focuses on one-dimensional numeric waves. Waves can have up to four dimensions and can
store text data. Multidimensional waves are covered in Chapter II-6, Multidimensional Waves. Text waves
are discussed in this chapter.

The primary tools for dealing with waves are Igor’s built-in operations and functions and its waveform assign-
ment capability. The built-in operations and functions are described in detail in Chapter V-1, Igor Reference.
This chapter covers:

* waves in general

e operations for making, killing and managing waves

* setting and examining wave properties

* waveform assignment

and other topics.

Waveform Model of Data

A wave consists of a number of components and properties. The most important are:

* the wave name

* the X scaling property

e X units

* an array of data values

* data units

The waveform model of data is based on the premise that there is a straight-line mapping from a point
number index to an X value or, stated another way, that the data is uniformly spaced in the X dimension.
This is the case for data acquired from many types of scientific and engineering instruments and for math-

ematically synthesized data. If your data is not uniformly spaced, you can use two waves to form an XY
pair. See XY Model of Data on page II-75.

A wave is similar to an array in a standard programming language like BASIC, FORTRAN, Pascal, or C.

An array A wave
I I I I
Point data value
Index Value Number X value (s) (V)
array0 0 3.74 waveQ 0 0 3.74
1 4.59 1 .001 4.59
2 4.78 2 .002 4.78
3 5.89 3 .003 5.89
4 5.66 4 .004 5.66

I1-74

Chapter II-5 — Waves

An array in a standard language has a name (array0 in this case) and a number of values. We can reference
a particular value using an index.

A wave also has a name (wave0 in this case) and data values. It differs from the array in that it has fwo indi-
ces. The first is called the point number and is identical to an array index or row number. The second is
called the X value and is in the natural X units of the data (e.g., seconds, meters). Like point numbers, X
values are not stored in memory but rather are computed.

The X value is related to the point number by the wave’s X scaling, which is a property of the wave that you can
set. The X scaling of a wave specifies how to compute an X value for a given point number using the formula:

x[pl] = x0 + dx-p

where x[p] is the X value for point p. The two numbers x0 and dx constitute the wave’s X scaling property.
x0 is the starting X value. dx is the difference in X value from one point to the next. X values are uniformly
spaced along the data’s X dimension.

The SetScale operation (see page V-544) sets a wave’s X scaling. You can use the Change Wave Scaling
dialog to generate SetScale commands.

Why does Igor use this model for representing data? We chose this model because it provides all of the
information that needed to properly display, analyze and transform waveform data.

By setting your data’s X scaling, and X and data units in addition to its data values, you can make a proper
graph in one step. You can execute the command

Display waveO

to produce a graph like this:

5.5 —
5.0 —
4.5 —

4.0

If your data is uniformly spaced on the X axis, it is critical that you understand and use X scaling.

The X scaling information is essential for operations such as integration, differentiation and Fourier trans-
forms and for functions such as the area function (see page V-27). It also simplifies waveform assignment
by allowing you to reference a single value or range of values using natural units.

In Igor Pro 3.0, we extended Igor from one dimension to multiple (up to 4) dimensions. To the X dimension,
we added the Y, Z and T dimensions. X scaling extends to dimension scaling. For each dimension, there is
a starting index value (x0, y0, z0, t0) and a delta index value (dx, dy, dz, dt). See Chapter II-6, Multidimen-
sional Waves, for more about multidimensional waves.

XY Model of Data

If your data is not uniformly spaced along its X dimension then it can not be represented with a single wave.
You need to use two waves as an XY pair.

In an XY pair, the data values of one wave provide X values and the data values of the other wave provide
Y values. The X scaling of both waves is irrelevant so we leave it in its default state in which the x0 and dx
components are 0 and 1. This gives us

x[p] =0+ 1-p

I1-75

Chapter II-5 — Waves

This says that a given point’s X value is the same as its point number. We call this “point scaling”. Here is
some sample data that has point scaling.

X wave Y wave
I I I I
Point data value Point data value
Number X value () V) Number X value () V)
xWave 0 0 0.0 yWave 0 0 3.74
1 1 .0013 1 1 4.59
2 2 .0021 2 2 4.78
3 3 .0029 3 3 5.89
4 4 .0042 4 4 5.66

The X values serve no purpose in the XY model. Therefore, we change our thinking and look at an XY pair
this way.

X wave Y wave
| I | |
Point Point
Number Value (s) Number Value (V)
xWave 0 0.0 yWave 0 3.74
1 .0013 1 4.59
2 .0021 2 4.78
3 .0029 3 5.89
4 .0042 4 5.66

We can execute

Display yWave vs xWave

and it produces a graph like this.

5.5 —
5.0 —
4.5+
4.0 —
LI I I
0 1 2 3 4

ms

Some operations, such as Fast Fourier Transforms and convolution, require equally spaced data. In these
cases, it may be desirable for you to create a uniformly spaced version of your data by interpolation. See
Converting XY Data to a Waveform on page I11-116.

Some people who have uniformly spaced data still use the XY model because it is what they are accustomed
to. This is a mistake. If your data is uniformly spaced, it will be well worth your while to learn and use the
waveform model. It greatly simplifies graphing and analysis and makes it easier to write Igor procedures.

II-76

Chapter II-5 — Waves

Making Waves

You can make waves by:

* Loading data from a file

¢ Typing or pasting in a table

* Using the Make operation (via a dialog or directly from the command line)

* Using the Duplicate operation (via a dialog or directly from the command line)

Most people start by loading data from a file. Igor can load data from text files. In this case, Igor makes a
wave for each column of text in the file. Using external operations, Igor can also load data from binary files

or application-specific files created by other programs. For information on loading data from files, see
Chapter II-9, Importing and Exporting Data.

You can enter data manually into a table. This is recommended only if you have a small amount of data.
See Using a Table to Create New Waves on page 1I-189.

To synthesize data with a mathematical expression, you would start by making a wave using the Make
operation (see page V-352). This operation is also often used inside an Igor procedure to make waves for
temporary use.

The Duplicate operation (see page V-128) is an important and handy tool. Many built-in operations trans-
form data in place. Thus, if you want to keep your original data as well as the transformed copy of it, use
Duplicate to make a clone of the original.

Wave Names

All waves in Igor have names so that you can reference them from commands. You also use a wave’s name
to select it from a list or pop-up menu in Igor dialogs or to reference it in a waveform assignment statement.

You need to choose wave names when you use the Make, Duplicate or Rename operations via dialogs,
directly from the command line, and when you use the Data Browser.

All names in Igor are case insensitive; waveQ) and WAVEQ refer to the same wave.

The rules for the kind of characters that you can use to make a wave name fall into two categories: standard
and liberal. Both standard and liberal names are limited to 31 characters in length.

Standard names must start with an alphabetic character (A - Z or a-z) and may contain alphabetic and
numeric characters and the underscore character only. Other characters, including spaces, dashes and peri-
ods, are not allowed. We put this restriction on standard names so that Igor can identify them unambigu-
ously in commands, including waveform assignment statements.

Liberal names, on the other hand, can contain any character except control characters (such as tab or car-
riage return) and the following four characters:

" ' .
7

Standard names can be used without quotation in commands and expressions but liberal names must be
quoted. For example:

Make wave0O; waveO = p // waveO is a standard name
Make 'wave 0'; 'wave 0' = p // 'wave 0' is a liberal name

Igor can not unambiguously identify liberal names in commands unless they are quoted. For example, in

wave(O = miles/hour

miles/hour could be a single wave or it could be the quotient of two waves.

I1-77

Chapter II-5 — Waves

To make them unambiguous, you must enclose liberal names in single straight quotes whenever they are
used in commands or waveform arithmetic expressions. For example:

waveO = 'miles/hour’

Display 'run 98', 'run 99'

Warning: Some Igor procedures and extensions written prior to Igor Pro 3.0 will not work on objects with
liberal names. Providing for liberal names requires extra effort and testing on the part of Igor
programmers (See Programming with Liberal Names on page IV-147). We recommend that you
avoid using liberal names until you understand the potential problems and how to solve them.

See Object Names on page I1I-411 for a discussion of object names in general.

Number of Dimensions

Waves can consist of one to four dimensions. You determine this when you make a wave. You can change it
using the Redimension operation (see page V-495). See Chapter 1I-6, Multidimensional Waves for details.

Number Type and Precision

Each numeric wave has a numeric type and a numeric precision. You can set a wave’s type and precision
when you make it. You can change it using the Redimension operation (see page V-495) or the Redimen-
sion dialog. The numeric type can be real or complex.

Not all operations and functions work on complex waves. Also, when you use a complex wave in a real
number expression you will get an error message. See Example: Complex Wave Calculations on page 11-94
for more information.

This table shows the numeric precisions available in Igor.

Precision Type Range Bytes per Point
double floating point = 10324 {5 10%307 (~15 decimal digits) 8
single floating point 1045 to 10*38 (~7 decimal digits) 4
signed integer integer -2,147,483,647 to 2,147,483,648 4
signed word integer -32,768 to 32,767 2
signed byte integer -128 to 127 1
unsigned integer integer 0 to 4,294,967,295 4
unsigned word integer 0 to 65,535 2
unsigned byte integer 0 to 255 1

For most work, single precision waves are appropriate.

Single precision waves take up half the memory and disk space of double precision. With the exception of
the FFT, Igor uses double precision for all calculations regardless of the numeric precision of the source
wave. However, the narrower dynamic range and smaller precision of single precision is not appropriate
for all data. If you are not familiar with numeric errors due to limited range and precision, it is safer to use
double precision for analysis.

Integer waves are intended for data acquisition purposes and are not intended for use in analysis. See
Integer Waves on page 11-98 for details.

I1-78

Chapter II-5 — Waves

Default Wave Properties

When you create a wave using the Make operation (see page V-352) operation with no optional flags, it has
the following default properties.

Property Default

Number of points 128

Precision single

X scaling x0=0, dx=1 (point scaling)
X units blank

Data units blank

These are the key wave properties. For a comprehensive list of properties, see Complete List of Wave Prop-
erties on page I1-99.

If you make a wave by loading it from a file or by typing in a table, it has the same default properties except
for the number of points.

However you make waves, you should use the Change Wave Scaling dialog to set their X scaling and units.

It is possible to change the default wave properties using the SetScale operation (see page V-544).

Make Operation

Most of the time you will probably make waves by loading data from a file (see Chapter II-9, Importing and
Exporting Data), by entering it in a table (see Using a Table to Create New Waves on page 1I-189), or by
duplicating existing waves (see Duplicate Operation on page II-83).

The Make operation is used for making new waves. See the Make operation (see page V-352) for additional
details.
Here are some reasons to use Make:
¢ To make waves to play around with.
¢ For plotting mathematical functions.
¢ To hold the output of analysis operations.
¢ To hold miscellaneous data, such as the parameters used in a curve fit or temporary results within
an Igor procedure.

The Make Waves dialog provides an interface to the Make operation. To use it, choose Make Waves from
the Data menu.

Make Waves
Text Names
+ Double Float 64 bit wavel wavel wave2
Single Float 32 bit
Integer 32 bit
Word 16 bit =
Byte 8 bit ™ Overwrite existing waves Dimensions: ' 1 (vectors) ==] —3» 1 (vectors)
Unsigned Int 32 bit - - T 2 (matrices)
~———Type: [Double Float 64 bit |+ Rows: 128
Unsigned Word 16 bit oue s — 3
Unsigned Byte 8 bit __| Complex 4
Select for complex waves, 4
deselect for real. Make /0/0 waved,wavel , wave?
 Doit) (ToCmdLine) (ToClip) (Help) (Cancel)

A

I1-79

Chapter II-5 — Waves

You can make 1 to 8 waves with this dialog. You can use it any number of times to create as many waves
as your memory will hold. It is most often used to create 1D numeric waves but can also create multidimen-
sional waves and text waves.

Waves have a definite number of points. Unlike a spreadsheet program which automatically ignores blank
cells at the end of a column, there is no such thing as an “unused point” in Igor. You can change the number
of points in a wave using the Redimension Waves dialog or the Redimension operation (see page V-495).

The “Overwrite existing waves” option is useful when you don’t know or care if there is a wave with the
same name as the one you are about to make.

Make Operation Examples

Make coefs for use in curve fitting:

Make/O coefs = {1.5, 2e-3, .01}

Make a wave for plotting a math function:

Make/0O/N=200 test; SetScale x 0, 2*PI, test; test = sin(x)
Make a 2D wave for image or contour plotting:

Make/O/N=(20,20) w2D; w2D = (p-10)*(g-10)

Make a text wave for a category plot:

Make/O/T quarters = {"Q1", "Q2", "Q3", "Q4"}

It is often useful to make a clone of an existing wave. Don’t use Make for this. Instead use the Duplicate
operation (see page V-128).

Make/O does not preserve the contents of a wave and in fact will leave garbage in the wave if you change
the number of points, numeric precision or numeric type. Therefore, after doing a Make/O you should not
assume anything about the wave’s contents. If you know that a wave exists, you can use the Redimension
operation instead of Make. Redimension does preserve the wave’s contents (however, see the Redimension
operation (see page V-495)).

Waves and the Miscellaneous Settings Dialog

The state of the precision items in the Make Waves and Load Waves dialogs, and the way Igor Binary waves
are loaded (whether they are copied or shared) are preset with the Miscellaneous Settings dialog using the
Data Loading Settings category; see Miscellaneous Settings on page 111-407.

Changing Dimension and Data Scaling

When you make a 1D wave, it has default X scaling, X units and data units. You should use the SetScale
operation (see page V-544) to change these properties.

The Change Wave Scaling dialog provides an interface to the SetScale operation. To use it, choose Change
Wave Scaling from the Data menu.

I1-80

Chapter II-5 — Waves

Specifies the dimension for Units for the selected Units forthe data ~ Select waves here. Shift-click
which scaling is to be set. —— dimension. values. to select multiple waves.
*y Change Wave Scaling E]
Specifies a scaled ¥ Set[x +| Properies psics)
. . . b hd
dimension index))) Jroa =
Units Type: |Numenc j Uniits: | &
(e.g., X value) from_—_ . waved
an element number Stat: [0 o x:::;
(e.g., row number). Beter @) waved
@ waved
¥ Set Data Properties
Units Type: |Numenc j Units: | e
Murneric |
Date <
Time
DratedTime j
-
Adds optional _— More Dptions From W/ave
items to the dialog. ‘
‘ | | Help ‘ Cancel ‘

Click to transfer wave properties to dialog settings.

Scaled dimension indices can represent ordinary numbers, dates, times or date&time values. In the most
common case, they represent ordinary numbers and you can leave the Units Type pop-up menu in the Set
X Properties section of the dialog on its default value: Numeric.

If your data is waveform data, you should enter the appropriate Start and Delta X values. If your data is XY
data, you should enter O for Start and 1 for Delta. This results in the default “point scaling” in which the X
value for a point is the same as the point number.

Normally you should leave the Set X Properties and Set Data Properties checkboxes selected. Deselect one
of them if you want the dialog to generate commands to set only X or only Data properties. When working
with multidimensional data, the X of Set X Properties can be changed to Y, Z or T via the pop-up menu. See
Chapter II-6, Multidimensional Waves.

If you want to observe the properties of a particular wave, double-click it in the list or select the wave and
then click the From Wave button. This sets all of the dialog items according to that wave’s properties.

Igor uses the dimension and data Units to automatically label axes in graphs. Igor can handle units consisting
TN/ “"__r If

of 49 characters or less. Typically, units should be short, standard abbreviations such as “m”, “s”, or “g”.
your data has more complex units, you can enter the complex units or you may prefer to leave the units blank.

If you click More Options, Igor will display some additional items in the dialog. These items add some con-
venience but also tend to obscure the critical purpose of the dialog. With the additional options, the dialog
looks like this:

I1-81

Chapter II-5 — Waves

0o Change Wave Scaling
Wiset 'x |2] Properties Wave(s)

.) e . wavel
Units Type: | Numeric |%] Units: s & wavel

Start: . wave?

. wave3
Delta: 0,01 &l waves
SetScale Mode: | Start and Delta e]

@ Set Data Properties

Units Type: = Numeric 5] Units:
Hin: 10 v & RIC
Max: 0 —
__ From Target
|& Fewer Options _/I I\-_ From Wave _/'

SetScale/F = @,8.61,"s", waved,waveZ,waved;Delaylpdate
SetScale d 8,8,"w", waved, wave,waves

9 Cancel f',g

€ Dot) (ToCmd Line) (ToClip) (" Help

,

In spite of the fact that there is only one way of calculating X values, there are three ways you can specify
the x0 and dx values. The SetScale Mode pop-up menu changes the meaning of the scaling entries above.

The simplest way is to simply specify x0 and dx directly. This is the Start and Delta mode in the dialog and
is the only way of setting the scaling unless you click the More Options button. As an example, if you have
data that was acquired by a digitizer that was set to sample at 1 MHz starting 150 ps after t=0, you would
enter 150E-6 for Start and 1E-6 for Delta.

The other two ways of specifying X scaling are to set the starting and ending X values are and to calculate
dx from the number of points. In the Start and End mode you specify the X value of the last data point.
Using the Start and Right mode you specify the X at the end of the last interval. For example, assuming our
digitizer (above) created a 100 point wave, we would enter 150E-6 as Start for either mode. If we selected
the Start and End mode we would enter 249E-6 for End (150E-6 + 99*1E-6). If we selected Start and Right
we would enter 250E-6 for Right.

The min and max entries allow you to set a property of a wave called its “data full scale”. This property
doesn’t serve a critical purpose. Igor does not use it for any computation or graphing purposes. It is merely
a way for you to document the conditions under which the wave data was acquired. For example, if your
data comes from a digital oscilloscope and was acquired on the +10v range, you could enter -10 for min and
+10 for max. When you make waves, both of these will initially be set to zero. If your data has a meaningful
data full scale, you can set them appropriately. Otherwise, leave them zero.

The data units, on the other hand are used for graphing purposes, just like the dimension units.

Date, Time, and Date&Time Units

The units “dat” are special, specifying that the scaled dimension indices or data values of a wave contain
date, time, or date&time information. In these cases, waves must be double-precision floating point in order
to have enough precision to represent dates accurately.

For example, if you have a waveform that contains some quantity measured once per day, you would set
the X units for the wave to “dat”, set the starting X value to the date on which the first measurement was
done, and set the Delta X value to one day. Choosing Date from the Units Type pop-up menu sets the X

I1-82

Chapter II-5 — Waves

units to “dat”. You can enter the starting value as a date rather than as a number of seconds since 1/1/1904,
which is how Igor represents dates internally. When Igor graphs the waveform, it will notice that the X units
are “dat” and will display dates on the X axis.

If instead of a waveform, you have an XY pair, you would set the data units of the X wave to “dat”, by
choosing Date from the Units Type pop-up menu in the Set Data Properties section of the dialog. When you
graph the XY pair, Igor will notice that the X wave contains dates and will display dates on the X axis.

The Units Type pop-up menus do not correspond directly to any property of a wave. That is, a wave doesn’t
have a units type property. Instead, these menus merely identify what kind of values you are dealing with
so that the dialog can display the values in the appropriate format.

For information on dates and times in tables, see Date/Time Formats on page II-210. For information on
dates and times in graphs, see Date/Time Axes on page I1-268.

Duplicate Operation

Duplicate is a handy and frequently-used operation. It can make new waves that are exact clones of existing
waves. It can also clone a section of a wave and thus provides an easy way to break a big wave up into
smaller waves.

Here are some reasons to use Duplicate:

* To hold the results of a transformation (e.g. integration, differentiation, FFT) while preserving the
original data.

® To hold the “destination” of a curve fit.
¢ For holding temporary results within an Igor procedure.
* To extract a section of a wave.

The Duplicate Waves dialog provides an interface to the Duplicate operation (see page V-128). To use it,
choose Duplicate Waves from the Data menu.

Duplicate Waves

Valid names start with
a letter and contain

Names

only letters, numbers — | WaveD-D1
or underscores.

] Overwrite existing waves Template: — Select the source wave here.
Use the Range X Range [From target ——— Select to show only those
controls to clone a cursors) waves used in the target
section of a wave. . Create New Waves in Data Folder: window.

(dlear)

Duplicate wawved waweD_D1

Select a data folder, if present.

€ Doit) (ToCmdlLine) (ToClip) Help) (Cancel)

4

The cursors button is used in conjunction with a graph. You can make a graph of your template wave. Then
put the cursors on the section of the template that you want to extract. Choose Duplicate Waves from the
Data menu and click the cursors button. Then click Do It. This clones the section of the template wave iden-
tified by the cursors.

People sometimes make the mistake of using the Make operation when they should be using Duplicate. For
example, the destination wave in a curve fit must have the same number of points, numeric type and
numeric precision as the source wave. Duplicating the source wave insures that this will be true.

Duplicate Operation Examples
Clone a wave and then transform the clone:

Duplicate/O wave0, wave(O dl; Differentiate waveO dl

I1-83

Chapter II-5 — Waves

Use Duplicate to inherit the properties of the template wave:

Make/N=200 wave0O; SetScale x 0, 2*PI, wavel; wavel = sin(x)
Duplicate wave(O, wavel; wavel = cos(x)

Make a destination wave for a curve fit:

Duplicate/O datal, datal fit
CurveFit gauss datal /D=datal fit

Compare the first half of a wave to the second:

Duplicate/O/R=[0,99] datal, datal 1
Duplicate/0/R=[100,199] datal, datal 2
Display datal 1, datal 2

We often use the /O flag (overwrite) with Duplicate because we don’t know or care if a wave already exists
with the new wave name.

Killing Waves

The KillWaves operation (see page V-309) removes waves from the current experiment. This releases the
memory used by the waves. Waves that you no longer need clutter up lists and pop-up menus in dialogs.
By killing them, you reduce this clutter.

Here are some situations in which you would use KillWaves:

* You are finished examining data that you loaded from a file.

* You are finished using a wave that you created for experimentation.

* You no longer need a wave that you created for temporary use in an Igor procedure.

The Kill Waves dialog provides an interface to the KillWaves operation. To use it, choose Kill Waves from
the Data menu.

’% Kill Waves W

YWanes notin use

|r|:u:|t ﬂ

&y wawvel [Delete source files
£l wavel |
&l wane? v | | Killallwaves notinuse [(Applies only to wawves in

current data folder)

[

KillWaves wavel wavel

Dot Ta Crmd Line To Clip Help Cancel

Igor will not let you kill waves that are used in graphs, tables or user defined functions so they do not
appear in the list.

Note: Igor can not tell if a wave is referenced from a macro. Thus, Igor will let you kill a wave that is
referenced from a macro but not used in any other way. The most common case of this is when
you close a graph and save it as a recreation macro. Waves that were used in the graph are now

I1-84

Chapter II-5 — Waves

used only in the macro and Igor will let you kill them. If you execute the graph recreation macro,
it will be unable to recreate the graph.

KillWaves can delete the Igor Binary file from which a wave was loaded, called the “source file”. This is
normally not necessary because the wave you are killing either has never been saved to disk or was saved
as part of a packed experiment file and therefore was not loaded from a standalone file.

The “Kill all waves not in use” option is intended for those situations where you have created an Igor exper-
iment that contains procedures which load, graph and process a batch of waves. After you have processed
one batch of waves, you can kill all graphs and tables and then kill all waves in the experiment in prepara-
tion for loading the next batch. This affects only those waves in the current data folder; waves in any other
data folders will not be killed.

KillWaves Operation Examples

Here are some simple examples using KillWaves. See also the “Kill Waves” procedure file in the “WaveM-
etrics Procedures” folder.

// Kills all target windows and all waves.
// Does not kill nontarget windows (procedure and help windows) .
Function KillEverything()

String windowName

do
windowName = WinName (0, 1+2+4+16+64)// Get next target window
if (CmpStr (windowName, "") == 0) // If name is ""
break // we are done so break loop
endif
DoWindow/K S$windowName // Kill this target window
while (1)
KillWaves/A // Kill all waves
End
// This illustrates killing a wave used temporarily in a procedure.
Function/D Median (w) // Returns median value of wave w
Wave w

Variable result

Duplicate/O w, temp // Make a clone of wave
Sort temp, temp // Sort clone

result = temp[numpnts (temp) /2]

KillwWaves temp // Kill clone

return result
End

Browsing Waves

The Data Browser (Data menu) lets you see what waves (as well as strings and variables) exist at any given
time. It also lets you see what data folders exist and set the current data folder. The Data Browser is
described in detail in Chapter II-8, Data Folders. Note that the Data Browser is an external code module
(XOP) and will not be available if you have removed it from the Igor Extensions folder.

The Browse Waves dialog (also in the Data menu) lets you examine wave properties, such as the number
of points, numeric type, X scaling and wave note.

You can use the Browse Waves dialog to:
¢ Inspect the properties of your waves.

e Edit the wave note (arbitrary text that Igor stores with each wave).

I1-85

Chapter II-5 — Waves

* Move waves between memory and disk files.

Note: Use the Relocate to File button with care. This button can create a situation in which your
experiment depends on files stored separately from the experiment. This causes problems if you
move the experiment to another computer because you must also move the separate files. See
Chapter II-3, Experiments, Files and Folders for further explanation.

Controls the waves shown in the list. You can browse waves in
memory or from any symbolic path in the current experiment.

| Browse Waves

" In memory C
@B Acetonel0 Type: DP Dimensions: 1 Locked: No
Select the wave @ Aceonezs Points: 128
to inspect.) Acetoneso Scale: x.0,128,"
Bkgd
@B g D Scale: 0,0,*
Mod: yes 12/15/03 4:54 PM
Data Folder: root:
FE)< T>
= The wave’s
Symb Path: _none_ File Name: — .
properties.
X Path:
You can inspect
or edit the wave) —rr
note here- . 25%solution of acetone in water. m
) Kryptan lazer, callecting lens 771, focussing lens /7.

Saves the wave in
its own file. The +
wave remains in e i
the current — Relocate to File) -
experiment. ———————— (SaveandKill) Path: [_default_ =

[Save a Copy |

_'—/ 4
Saves a copy of the wave into Saves the wave in its own file, Determines the folder
a file. The wave remains in and removes the wave from the used by the Save and
the current experiment. current experiment. Relocate buttons.

The wave type shown in the Type field is abbreviated as follows:

Abbreviation Description

SpP single precision floating point
DP double precision floating point
INT32 32 bit signed integer

INT16 16 bit signed integer

INTS8 8 bit signed integer

UINT32 32 bit unsigned integer
UINT16 16 bit unsigned integer

UINTS8 8 bit unsigned integer

CMPLX complex

Most often this dialog is used to check the X scaling of or number of points in a wave. It is also often used
to inspect or edit the wave note. See Using the Wave Note on page II-97 for details.

The Save and Kill button is useful in certain situations involving data acquisition. For example, when you
are repeating the same experiment many times under different conditions, you can document the condi-
tions in the wave note and then archive the wave in a data folder for later analysis.

The Path pop-up menu includes a “_default_" item in addition to all the symbolic paths that are defined in
the current experiment. The “_default_” item represents the path containing the file the wave was originally
loaded from (if any) or the experiment’s “home folder”.

I1-86

Chapter II-5 — Waves

The pop-up menu above the wave list determines what waves appear in the list. Normally, you will leave this
set to In Memory and the list will display only those waves that are in the current data folder of the current exper-
iment. The From Target item displays only those waves in the current data folder and in the target graph or table.

The other items in the pop-up are the names of symbolic paths that exist in the current experiment. If you
select one of these items, the list displays unpacked Igor Binary wave files stored in the path and the buttons
at the bottom of the dialog change.

Browse Waves

When you select a symbolic Path: Filters &
ath here the list displays
p . p.y i Type: sp Dimensions: 1 Locked: No
waves stored in Igor binary coefindex.ibw Points: a1
. . coefs.ibw 2
files in that path. coefsDbMag.ibw Sl
coefsFP.ibw
D Scale: g,0,™
Maod: 12/16/03 11:36 AM
Darta Folder: Not Applicable
Symb Path: File Name:

You can inspect the wave
note but you can’t modify it
because the wave is not in

Path: Macintosh HD:Users:lgor:Filters:

memory' —— MeClellan-Parks; three band q
Band Start Freq (Hz) End Freg {Hz) A
10 0.1 (reject band)
2 015 0.25 {pass band} .
v
Loads the wave from the O S
selected Igor binary file into —_—
gor binary fle info. ¢ i)

the current experiment.

Note: The “Load it” button has the same potential pitfall as described above for the Relocate to File button.
If you use this, your experiment will depend on the standalone Igor Binary file that you loaded.

Renaming Waves

You can rename a wave using:
e The Data Browser
® The Rename dialog (Data menu)

* The Rename operation from the command line
The Rename operation (see page V-501) renames waves as well as other objects.

Here are some reasons for renaming waves:
* You have loaded a bunch of waves from a file and Igor auto-named the waves.

¢ You have decided on a naming convention for waves and you want to make existing waves follow
the convention.

* You are about to load a set of waves whose names will be the same as existing waves and you want
to get the existing waves out of the way but still keep them in memory. (You could also achieve this
by moving them to a new data folder.)

To use the Rename operation, choose Rename from the Data menu. This brings up the Rename Objects dialog.

I1-87

Chapter II-5 — Waves

Rename Objects

Controls the type of Waves =] Current Name Type New Names
object to be renamed. Enter the new
&I waveo wave0 Wave | GRZO_AL 4= name here.
@ wavel
@ wave2
Select a wave here. ———) wave3 2]
e R
Renome waved, GRZE_AT;
(Do It) (ToCmdLine) (To Clip] € Help) (Cancel)

A4

Redimensioning Waves

Redimension can change the following properties of a wave:
® The number of dimensions in the wave.

® The number of elements in each dimension.

® The numeric precision (e.g., single to double).

* The numeric type (e.g., real to complex).

The Redimension Waves dialog provides an interface to the Redimension operation (see page V-495). To
use it, choose Redimension Waves from the Data menu.

Redimension Waves

" root .!

Select wave from list. —— & wave2
[2] € Add Al)
M ——— RIC
| From Target
Wave Rows Columns Layers Chunks Precision Type
wave0 |1024 |0 |0 |0 | Single Float32 bit | #)[Real [§](Revert)
wavel [r0za o B [0 | “single Float 32 bit_ [3) Real 3] (Revert)
Edit wave dimensions in
boxes.
Make all wave properties Set All to Match wave0 3
match the selected wave or —
propeny. Redimension /MN=1824 waved, wave 1
{ Do it) (ToCmdLline) (To Clip) Help (" Cancel) y
‘A

When Redimension adds new elements to a wave, it sets them to zero for a numeric wave and to blank for
a text wave.

The following commands illustrate two ways of changing the numeric precision of a wave. Redimension
preserves the contents of the wave whereas Make does not.

Make/N=5 wavel=x
Edit waveO

I1-88

Chapter II-5 — Waves

Redimension/D wave0 // This preserves the contents of waveO.
Make/0O/D/N=5 wave0 // This does not.

See Vector (Waveform) to Matrix Conversion on page II-107 for information on converting a 1D wave into
a 2D wave while retaining the data (i.e., reshaping).

You cannot change a wave from numeric to text or vice versa. The following examples illustrate how you
can make a text copy of a numeric wave and a numeric copy of a text wave:

Make/N=10 numWave = p
Make/T/N= (numpnts (numWave)) textWave = num2str (numWave)
Make/N= (numpnts (textWave)) numWave2 = str2num(textWave)

However, you can lose precision because num2str prints with only 6 digits of precision.

Inserting Points

There are two ways to insert new points in a wave. You can do this by:

¢ Using the InsertPoints operation.

¢ Typing or pasting in a table.

This section deals with the InsertPoints operation (see page V-296). For information on typing or pasting

in a table, see Chapter II-11, Tables.

Using the InsertPoints operation, you can insert new data points at the start, in the middle or at the end of
a 1D wave. You can also insert new elements in multidimensional waves. For example, you can insert new
columns in a 2D matrix wave. The inserted values will be 0 for a numeric wave and "" for a text wave.

The Insert Points dialog provides an interface to the InsertPoints operation. To use it, choose Insert Points
from the Data menu.

' rows Insert Points
columns) Wave(s)
~———— Dimension: i]
Iz;yeri RS & waveo —— Select waves.
chunks 1
First point: 100 5 ::::2
’7 Number of points: 10 & wave3
New points will be
inserted in front of
the point specified FME <[>
here. "] From target Select to list only
InsertPoints 188,18, waved,wavel those waves in the
top graph or table.
(Do It) (ToCmdLline)(To Clip] € Help Y (Cancel)

4

If the value that you enter for first point is greater than the number of elements in the selected dimension
of a selected wave, the new points are added at the end of the dimension. InsertPoints can change the
dimensionality of a wave. For example, if you insert a column in a 1D wave, you end up with at 2D wave.

If the top window is a table at the time that you select Insert Points, Igor will preset the dialog items based
on the selection in the table.

Deleting Points

There are two ways to delete points from a wave. You can do this by:
¢ Using the DeletePoints operation.
* Doing a cut in a table.

I1-89

Chapter II-5 — Waves

This section deals with the DeletePoints operation (see page V-108). For information on cutting in a table,
see Chapter II-11, Tables.

Using the DeletePoints operation, you can delete data points from the start, middle or end of a 1D wave.
You can also delete elements from multidimensional waves. For example, you can delete columns from a
2D matrix wave.

The Delete Points dialog provides an interface to the DeletePoints operation. To use it, choose Delete Points
from the Data menu.

v FOWS Delete Points
columns Wave(s)
~€———— Dimension: | 3!
Iz;yeri TN i & waveo ——— Select waves.
chunks : : &y wavel
First point: [313) . Ty
Number of points: | 10 & wave3
Enter the first point
to be deleted.
e RIC
[} From target Select to list only

DeletePoints 66,18, waved,wave? those waves in the
top graph or table.

(Do It)I ToCmd Line) (To Clip] € Help Y (Cancel)

4

If the value that you enter for first point is greater than the number of elements in the selected dimension
of a selected wave, DeletePoints will do nothing to that wave. If the number of elements is too large, Delete-
Points will delete from the specified first element to the end of the dimension. For multidimensional waves,
if you delete all but one element of a given dimension, the wave is changed to a lower dimensionality. For
example, if you have a 3D wave and delete all but one layer, you are left with a 2D wave.

If the top window is a table at the time that you choose Delete Points, Igor will preset the dialog items based
on the selection in the table.

Waveform Arithmetic and Assignments

Waveform arithmetic is the most flexible and powerful part of Igor’s analysis capability. You can write
assignment statements that work on an entire wave or on a subset of a wave much as you would write an
assignment to a single variable in a standard programming language.

This section deals with waveform arithmetic on 1D waves. See also Multidimensional Wave Assignment
on page II-105.

In a wave assignment, a wave appears on the left side and a mathematical expression appears on the right
side. Here are some examples.

wavel = sin (x)

wave0 = log(wavel/wave?2)

wave0[0,99] = wavel[100 + p]

A wave on the left side is called the destination wave. A wave on the right side is called a source wave.

Usually, source waves have the same number of points and X scaling as the destination wave. In rare cases,
it is useful to write a wave assignment where this is not true. See Mismatched Waves on page I1-96 for a
discussion of this.

When Igor executes a wave assignment, it evaluates the expression on the right-hand side one time for each
point in the destination wave. The result of each evaluation is stored in the corresponding point in the des-
tination wave.

I1-90

Chapter II-5 — Waves

During execution, the symbol p has a value equal to the number of the point in the destination wave which
is being evaluated and the symbol x has a value equal to the X value at that point. The X value for a given
point is determined by the number of the point and the X scaling for the wave. To see this, try the following:

Make/N=5 wave(O; SetScale/P x 0, .1, wave(O; Edit waveO.xy
wavel = p
wavel = x

The first assignment sets the value of each point of wave0 to the point number. The second assignment sets
the value of each point of wave0 to the X value for that point.

In Igor Pro 3.0, we extended Igor from one dimension to multiple (up to 4) dimensions. Just as the symbol p

returns the current element number in the rows dimension, the symbols g, r and s return the current element
number in the columns, layers and chunks dimensions. The symbol x in the rows dimension has analogs y, z
and t in the columns, layers and chunks dimensions. See Chapter II-6, Multidimensional Waves, for details.
A source wave returns its data value at the point being evaluated. In the example

wave0 = log(wavel/wave?2)

Igor evaluates the right-hand expression once for each point in wave0. During each evaluation of the
expression, wavel and wave2 return their data values at the point being evaluated.

The right-hand expression is evaluated in the context of the data folder containing the destination wave.
See Data Folders and Assignment Statements on page 1I-120 for details.

This command sequence illustrates some of these ideas.

Make/N=200 wavel, wave2 // 2 waves, 200 points each
SetScale/P x, 0, .05, wavel, wave2 // set X values from 0 to 10
Display wavel, wave2 // create a graph of waves
wavel = sin(x) // assign values to wavel
wave2 = wavel * exp(-x/5) // assign values to wave?2

1.0 [waveT =sin(x)]

VN
e \

\/| wave2 = wavel * exp(-x/5)]

I I I]
0 2 4 6 8 10

Since wavel has 200 points, the wave assignment wavel=sin (x) evaluates sin (x) 200 times, once for
each point in wavel. The first point of wavel is point number 0 and the last point of wavel is point number
199. The symbol p, not used in this example, goes from 0 to 199. The symbol x steps through the 200 X values
for wavel which start from 0 and step by .05, as specified by the SetScale command. The result of each eval-
uation is stored in the corresponding point in wavel, making wavel about 1.5 cycles of a sine wave.

Since wave2 also has 200 points, the wave assignment wave2=wavel*exp (-x/5) evaluates

wavel*exp (-x/5) 200 times, once for each point in wave2. In this assignment, the right-hand expression
contains a wave, wavel. As Igor executes the assignment, p goes from 0 to 199. Each of the 200 times the
right side is evaluated, wavel returns its data value for the corresponding point. The result of each evalu-
ation is stored in the corresponding point in wave2 making wave2 about 1.5 cycles of a damped sine wave.

The effect of a wave assignment is to set the data values of the destination wave. Igor does not remember
the functional relationship implied by the assignment. In this example, if you changed wavel, wave2 would
not change automatically. If you wanted wave2 to have the same functional relationship to wavel as it had
before you changed wavel, you would have to reexecute the wave2=wavel*exp (-x/5) assignment.

There is a special kind of wave assignment that does establish a functional relationship. See Wave Depen-
dency Formulas on page II-97 for details.

I1-91

Chapter II-5 — Waves

In Igor Pro 6.1 or later, you can use multiple processors to execute a waveform assignment statement that
takes a long time. See Automatic Parallel Processing with MultiThread on page IV-255 for details.

Indexing and Subranges

Igor provides two ways to refer to a specific point or range of points in a 1D wave: X value indexing and
point number indexing. Consider the following examples.

wave(O (54) = 92 // sets wave(O at X=54 to 92

wave(Q[54] = 92 // sets wave(O at point 54 to 92

wave((1,10) = 92 // sets wave(O from X=1 to X=10 to 92
wave0[1l,10] = 92 // sets waveQO from point 1 to point 10 to 92

Parentheses specify the range start and end values in terms of X. It is the equivalent of using brackets with the
x2pnt function to translate X values to point numbers. Brackets index the wave in terms of point number —
the number or numbers inside the parentheses are in terms of point numbers of the indexed wave. If the wave
has point scaling then these two methods have identical effects. However, if you set the X scaling of the wave
to other than point scaling then these commands behave differently. In both cases the range is inclusive.

You can specify not only a range but also a point number increment. For example:

wave0[0,98;2] =1 // sets even numbered points in wave0O to 1
wave0[1l,99;2] = -1 // sets odd numbered points in wave(O to -1

The number after the semicolon is the increment. Igor begins at the starting point number and goes up to
and including the ending point number, skipping by the increment. At each resulting point number, it eval-
uates the right-hand side of the wave assignment and sets the destination point accordingly. Increments can
also be used when you specify a range in terms of X value but the increment is always in terms of point
number. For example:

wave((0,100;5) = PI // sets wave(O at specified X values to PI

Here, Igor starts from the point number corresponding to x = 0 and goes up to and including the point
number that corresponds to x = 100. The point number is incremented by 5 at each iteration.

You can take some shortcuts in specifying the range of a destination wave. The subrange start and end
values can both be missing. When the start is missing, point number zero is used and when the end is miss-
ing, the last point of the wave is assumed. You can also use a * character to specify the last point. A missing
increment value defaults to a single point.

Here are some examples that illustrate these shortcuts:

waveO[,50] = 13 // sets wave(O from point 0 to point 50
waveO[51,] = 27 // sets waveO from point 51 to last point
waveO[, ;2] = 18.7 // sets every even point of wavel
waveO[l,*;2] = 100 // sets every odd point of wave0

A subrange of a destination wave may consist of a single point or a range of points but a subrange of a
source wave must consist of a single point. In other words the wave assignment:

wavel (4,5) = wave2(5,6) // Illegal!
is not legal. In this assignment, x ranges from 4 to 5. You can get the desired effect using;:
wavel (4,5) = wave2 (x+1) // OK!

By virtue of the range specified on the left hand side, x goes from 4 to 5. Therefore, x+1 goes from 5 to 6 and
the right-hand expression returns the values of wave2 from 5 to 6.

If, in specifying a subrange, you use an X value that is out of range, Igor clips it to the closest valid X value.
For example, the smallest X value of our sample waves is zero because of the X scaling that we assigned to
them. If you use wavel (-0.5) Igor clips the -0. 5 to 0 and therefore returns wavel (0) . Future versions
of Igor may regard this as an error so you should avoid using invalid subranges.

I1-92

Chapter II-5 — Waves

Interpolation in Wave Assignments

If you specify a fractional point number or an X value that falls between two data points, Igor will return a
linearly interpolated data value. For example, wavel[1.75] returns the value of wavel 3/4 of the way from
the data value of point 1 to the data value of point 2. This interpolation is done only for one-dimensional
waves. See Multidimensional Wave Assignment on page I1-105, for information on assignments with mul-
tidimensional data.

This is a very powerful feature. Imagine that you have an evenly spaced calibration curve, called calibra-
tion, and you want to find the calibration values at a specific set of X coordinates as stored in a wave called
xData. If you have set the X scaling of the calibration wave, you can do the following:

Duplicate xData, yData
yData = calibration (xData)

This uses the interpolation feature of Igor’s wave assignment to find a linearly-interpolated value in the cal-
ibration wave for each X coordinate in the xData wave.

Lists of Values

You can assign values to a wave or to a subrange of a wave using a list of values. For example:

waveO = {1, 3, 5} // sets length of wave0O to three
// and sets Y values to 1, 3, 5
waveO[10]= {1, 3, 5} // sets points 10 through 12 to 1, 3, 5

In these examples, {1, 3, 5} is a list of values.

If, in the second example, wave(Q had less than 10 points, it would have been automatically extended with
zeros before setting points 10 through 12.

Wave Initialization
From Igor’s command line, you can make a wave and initialize it with a single command, as illustrated in
the following examples:

Make waveO=sin (p/8) // wave(O has default number of points
Make coeffs={1,2,3} // coeffs has just three points

Example: Converting XY Data to Waveform Data

There are some times when it is desirable to convert XY data to uniformly spaced waveform data. For exam-
ple, the Fast Fourier Transform requires uniformly spaced data. If you have measured XY data in the time
domain, you would need to do this conversion before doing an FFT on it.

We can make some sample XY data as follows:

Make/N=1024 xWave, yWave
xWave = 2*PI*x/1024 + gnoise(.001)
yWave = sin (xwave)

xWave has values from 0 to 2n with a bit of noise in them. Our data is not uniformly spaced in the x dimen-
sion but it is monotonic — always increasing, in this case. If it were not monotonic we could sort the XY pair.

We can create a waveform representing our XY data as follows:

Duplicate ywave, wave0
SetScale x 0, 2*PI, wavel
wave(l = interp(x, xwave, ywave)

The SetScale command sets the scaling of wave(so that its X values run from 0 to 2r. Its data values are
generated by picking a value off the curve represented by ywave versus xwave at each of these X values
using linear interpolation.

See Converting XY Data to a Waveform on page I1I-116 for more information. It illustrates how to use cubic
spline instead of linear interpolation. Also, see the WM Procedures Index help file, which you will find

I1-93

Chapter II-5 — Waves

under the Windows—Help Windows menu. This help file provides an index of standard easy-to-use pro-
cedures that deal with XY data. These procedures can be accessed by simply copying a single line and
pasting it into the procedure window.

Example: Concatenating Waves

Concatenating waves can be done much more easily using the Concatenate operation (see page V-56). This
simple example serves mainly to illustrate a use of wave assignments.

Suppose we have three waves of 100 points each: wavel, wave2 and wave3. We want to create a fourth wave,
wave4, which is the concatenation of the three original waves. Here is the sequence of commands to do this.
Make/N=300 wave4

waved [0,99] = wavel [p] // set first third of waved
waved [100,199] = wave2[p-100] // set second third of waved
waved [200,299] = wave3[p-200] // set last third of waved

In this example, we use a subrange of wave4 as the destination of our wave assignments. The right-hand
expressions index the appropriate values of wavel, wave2 and wave3. Remember that p ranges over the
points being evaluated in the destination. So, p ranges from 0 to 99 in the first assignment, from 100 to 199
in the second assignment and from 200 to 299 in the third assignment. In each of the assignments, the wave
on the right-hand side has only 100 points, from point 0 to point 99. Therefore, we index the wave on the
right-hand side to pick out the 100 values of that wave.

Example: Decomposing Waves

Here is a another example that illustrates a use of wave assignments. Suppose we have a 300 point wave,
wave4, that we want to decompose into three waves of 100 points each: wavel, wave2 and wave3. Here is
the sequence of commands to do this.

Make/N=100 wavel,wave2,wave3

wavel = wave4[p] // get first third of waved4
wave?2 = waved [p+100] // get second third of waved
wave3 = waved [p+200] // get last third of waved

In this example, we use a subrange of wave4 as the source of our data. We index the desired segment of
wave4 using point number indexing. Since wavel, wave2 and wave3 each have 100 points, p ranges from
0to 99. In the first assignment, we access points 0 to 99 of wave4. In the second assignment, we access points
100 to 199 of wave4. In the third assignment, we access points 200 to 299 of wave4.

You could also use the Duplicate operation (see page V-128) to make a wave from a section of another wave.

Note that the wave assignment wavel=wave4 does not copy the first 100 points of wave4 to wavel because
wave4 has more points than wavel. This is described in the section Mismatched Waves on page II-96.

Example: Complex Wave Calculations

Igor includes a number of built-in functions for manipulating complex numbers and complex waves. These
are illustrated in the following examples.

Here, we make a time domain waveform and do an FFT on it to generate a complex wave. The examples
show how to pick out the real and imaginary part of the complex wave, how to find the sum of squares and
how to convert from rectangular to polar representation. For more information on frequency domain pro-
cessing, see Chapter III-9, Signal Processing.

// first, make a time domain waveform

Make/0O/N=1024 wavel

SetScale x 0, 1, "s", wavel // goes from 0 to 1 second
wavel=sin (2*PI*x)+sin (6*PI*x) /3+sin (10*PI*x) /5+sin (14*PI*x) /7
Display wave(O as "Time Domain"

// now, do FFT
Duplicate/0O waveO, cwave0 // get copy to do FFT on

I1-94

Chapter II-5 — Waves

FFT cwavel // cwave(O is now complex
cwaveO /= 512;cwave0[0] /= 2 // normalize amplitude
Display cwave0O as "Frequency Domain";SetAxis bottom, 0, 25

// calculate magnitude and phase

Make/0/N=513 mag0, phase(, power0 // these are real waves
CopyScales cwave(O, mag0O, phase(O, power0

mag0 = real (r2polar (cwave0))

phase0 = imag (r2polar (cwave0))

phase0 *= 180/PI // convert to degrees

Display mag0 as "Magnitude and Phase";AppendToGraph/R phase0
SetAxis bottom, 0, 25
Label left, "Magnitude";Label right, "Phase"

// calculate power spectrum
power(0 = magsqr (cwavel)
Display power(O as "Power Spectrum";SetAxis bottom, 0, 25

Example: Comparison Operators and Wave Synthesis

The comparison operators ==, >=, >, <= and < can be useful in synthesizing waves. Imagine that you want to
set a wave so that its data values all equal -n for x<0 and += for x>=0. The following wave assignment accom-
plishes this:

wavel = -pi* (x<0) + pi* (x>=0)

This works because the conditional statements return 1 when the condition is TRUE and 0 when itis FALSE,
and then the multiplication proceeds.

You can also make such assignments using the conditional operator (see Operators on page IV-5):
wavel = (x>0) ? pi : -pi

A series of impulses can be made using the mod function and ==. This wave equation will assign 5 to every
tenth point starting with point 0, and 0 to all the other points:

wavel = (mod(p,10)==0)*5

Example: Wave Assignment and Indexing Using Labels

A useful, and almost entirely overlooked, feature of dimension labels is that such labels can be used to refer to
wave values by a meaningful name. Thus, for example, you can create a wave to store coefficient values and
directly refer to these values by the name of the coefficient (e.g., coef[%Friction]) instead of a potentially confus-
ing and less meaningful numeric index (e.g., coef[1]). You can also view the wave values and labels in a table.

You create wave labels using the SetDimLabel operation (see page V-534); more details can be found under
Dimension Labels on page II-103. Label names may be up to 31 characters in length; if you use liberal
names, such as those containing spaces, make certain to enclose these names within single quotation marks.

In this example we create a wave and use the FindPeak operation (see page V-165) to get peak parameters
of the wave. Next we create an output parameter wave with appropriate labels and then assign the Find-
Peak results to the output wave using the labels.

// Make a wave and get peak parameters
Make test=sin(x/30)
FindPeak/Q test

// Create a wave with appropriate row labels
Make/N=6 PeakResult

SetDimLabel 0,0, 'Peak Found', PeakResult
SetDimLabel 0,1, PeakLoc, PeakResult
SetDimLabel 0,2,PeakVal, PeakResult
SetDimLabel 0,3, LeadingEdgePos, PeakResult
SetDimLabel 0,4, TrailingEdgePos, PeakResult
SetDimLabel 0,5, '"Peak Width', PeakResult

I1-95

Chapter II-5 — Waves

// Fill PeakResult wave with FindPeak output variables

PeakResult[%'Peak Found'] =V _flag
PeakResult [%PeakLoc] =V_PeakLoc
PeakResult [$PeakVal] =V _PeakVal

L
PeakResult [%$TrailingEdgePos]=V_TrailingEdgeLoc
1

[
[
PeakResult [%$LeadingEdgePos] =V _LeadingEdgeLoc
[
PeakResult [%$'Peak Width'] =V_PeakWidth

// Display the PeakResult values and labels in a table
Edit PeakResult.ld

In addition to the method illustrated above, you can also create and edit dimension labels by displaying the
wave in a table and showing the dimension labels with the data. See Showing Dimension Labels on page
II-185 for further details on using tables with labels.

Mismatched Waves

For most applications you will not need to mix waves of different lengths. In fact, doing this is more often
the result of a mistake than it is intentional. However, if your application requires mixing you will need to
know how Igor handles this.

Let’s consider the case of assigning the value of one wave to another with a command such as

wavel = wave?2

In this assignment, there is no explicit indexing, so Igor evaluates the expression as if you had written:

wavel = wave2[p]

If wave2 has more points than wavel, the extra points have no effect on the assignment since p ranges from
0 to n-1, where n is the number of points in wavel.

If wave2 has fewer points than wavel then Igor will try to evaluate wave2[p] for values of p greater than
the length of wave2. In this case, it simply returns the value of the last point in wave2.

It may be that you actually want the values in wavel to span the values in wave2 by interpolating between
values in wave2. To get Igor to do this, you must explicitly index the appropriate X values on the right side.
For instance, if you have two waves of different lengths, you can do this:

big = small[p* (numpnts (small)-1)/ (numpnts (big)-1)]

Of course, if you know how many points are in each wave, you can simply type the correct number rather
than typing out “numpnts (small)-1” and “numpnts (big) -1".

NaNs, INFs and Missing Values

The data value of a point in a floating point numeric wave is normally a finite number but can also be a NaN
or an INF. NaN means “not a number”. An expression returns the value NaN when it makes no sense math-
ematically. For example, 1og (-1) returns the value NaN. You can also set a point to NaN, using a table or
a wave assignment, to represent a missing value. An expression returns the value INF when it makes sense
mathematically but has no finite value. 1og (0) returns the value -INF.

The IEEE floating point standard defines the representation and behavior of NaN values. There is no way
to represent a NaN in an integer wave. If you attempt to store NaN in an integer wave, you will store a
garbage value.

Igor ignores NaNs and INFs in curve fit and wave statistics operations. NaNs and INFs have no effect on
the scaling of a graph. When plotting, Igor handles NaNs and INFs properly, as missing and infinite values
respectively.

Igor does not ignore NaNs and INFs in many other operations, especially those that are DSP related such
as FFT. In general, any operation that numerically combines all or most of the data points from a wave will
give meaningless results if one or more points is a NaN or INF. Notable examples include the area and

mean functions and the Integrate and FFT operations. Some operations that only mix a few points such as

I1-96

Chapter II-5 — Waves

Smooth and Differentiate will “contaminate” only those points in the vicinity of the NaN or INF. You can
use the Interpolate operation (Analysis menu) to create a NaN-free version of a wave.

The “Remove Points” procedure file provides a user- function for removing NaNs from a wave. See the WM
Procedures Index help file, which you will find under the Windows—Help Windows menu, for informa-
tion on how to access it.

If you get NaNs from functions such as area or mean or operations such as Convolve or any other functions
or operations that sum points in waves, it indicates that some of the points in the wave are NaN. If you get
NaNs from curve-fitting results, it indicates that Igor’s curve fitting has failed. See Curve Fitting Trouble-
shooting on page I1I-227 for troubleshooting tips.

Strange Cases

You may get unexpected results if the destination of a wave assignment also appears in the right-hand
expression. Consider these examples:

wavel —-= wavel (5)
wavel -= vcsr (A) // where cursor A is on wavel

Each of these examples is an attempt to subtract the value of wavel at a particular point from every point
in wavel. This will not work as expected because the value of wavel at that particular point is altered
during the assignment. At some point in the assignment, wavel(5) or vcsr(A) will return 0 since the value
at that point in wavel will have been subtracted from itself.

You can get the desired result by using a variable to store the value of wavel at the particular point.

KO = wavel (5); wavel -= KO
KO vesr (A) ; wavel -= KO

Wave Dependency Formulas

You can cause a wave assignment to “stick” to the wave by substituting “:=” for “=" in the statement. This
causes the wave to become dependent upon the objects referenced in the expression. For example:

KO =5

wavel := sin (x/KO0) // Note ":="

Display wavel

If you now execute “K0=8" you will see the wave automatically update. Similarly if you change the wave’s
X scaling using the SetScale operation (see page V-544), the wave will be automatically recalculated for the
new range of X values.

See Chapter IV-9, Dependencies, for further discussion.

Using the Wave Note

One of the properties of a wave is the wave note. This is just some plain text that Igor stores with each wave.
The note is empty when you create a wave. There is no limit on its length.

You can inspect and edit a wave note using the Browse Waves dialog. You can set or get the contents of a wave
note from an Igor procedure using the Note operation (see page V-428) or the note function (see page V-428).

You can see part of a wave note for a wave displayed in a graph or table by pressing the Command-Option-
Control (Macintosh) or Shift+F1 (Windows) and then clicking the wave.

Originally we thought of the wave note as a place for an experimenter to store informal comments about a
wave and it is fine for that purpose. However, over time both we and many Igor users have found that the
wave note is also a handy place to store additional, user-defined properties of a wave in a structured way.
These additional properties are editable using the Browse Waves dialog but they can also be used and
manipulated by procedures.

I1-97

Chapter II-5 — Waves

To do this, you store keyword-value pairs in the wave note. For example, a note might look like this:

CELLTYPE:rat hippocampal neuron;
PATTERN:1VN21;
TREATMENT : PLACEBO;

You could then write Igor functions to set or retrieve the CELLTYPE, PATTERN and TREATMENT prop-
erties of a wave. Using these functions you can write other procedures to, for example, display all waves
whose TREATMENT property is PLACEBO in a graph.

You can use functions in the “Keyword-Value” procedure file to manipulate keyword-value strings. See the
WM Procedures Index help file, which you will find under the Windows—Help Windows menu, for infor-
mation on how to access the functions.

Integer Waves

Igor provides support for integer waves primarily to aid in data acquisition projects. They allow people
who are interfacing with hardware to write/read directly into integer waves. This allows for slightly quicker
live display and also saves the XOP writer from having to convert integers to floating point. Integer waves
are also appropriate for storing images. Aside from memory considerations there is no other reason to use
integer waves. You might expect that wave assignment statements would evaluate more quickly when an
integer wave is the destination. This is not the case, however, because Igor still uses floating point for the
assignment and only converts to integer for storage.

Note: Behavior on under/over-flow is undefined.

Text Waves

Text waves are just like numeric waves except they contain bits of text rather than numbers. Like numeric
waves, text waves can have one to four dimensions.

To create a text wave:

¢ Type anything but a number into the first unused cell of a table.

e Import data from a delimited text file that contains nonnumeric columns.

¢ Use the Make operation with the /T flag.

You can use the Make Waves dialog to generate text waves by choosing Text from the Type pop-up menu.

Most often you will create text waves by entering text in a table. See Using a Table to Create New Waves
on page 1I-189 for more information.

You can store anything in an element of a text wave. There is no length limit and there are no illegal char-
acters. You can edit text waves in a table or assign values to the elements of a text wave using a command-
line assignment statement.

You can use text waves in category plots, to automatically label individual data points in a graph (use
markers mode and choose a text wave via the marker pop-up menu) and for storing notes in a table. Pro-
grammers may find that text waves are handy for storing a collection of diverse data, such as inputs to or
outputs from a complex Igor procedure.

Here is how you can create and initialize text waves on the command line:

Make/T textwave= {"first element","2nd and last element"}

To see the text wave, create a table:
Edit textWave

Now you can try some wave assignments and see the result in the table:

I1-98

Chapter II-5 — Waves

textWave[2] = {"third element"}
textWave += "*"
textWave = "*" + textwave

Programmer Notes

Appending to a text wave is much faster than inserting or changing existing text. If you are going to replace
all the text in an existing text wave it may be faster to kill the existing text by setting the number of points
to zero using the command:

Redimension/N=0 textwave

You can then use the Redimension command again to set the number of points back to the desired value
before storing new data.

In user-defined functions you can let the compiler know a wave will be text by using the /T flag in conjunc-
tion with the Wave keyword.

Complete List of Wave Properties

Here is a complete list of the properties that Igor stores for each wave.

Property Comment

Name Used to reference the wave from commands and dialogs.

1 to 31 characters. Standard names start with a letter. May contain letters,
numbers or underscores.

Liberal names may contain almost any character but must be enclosed in
single quotes. See Wave Names on page II-77.

The name is assigned when you create a wave. You can use the Rename
operation (see page V-501) to change it.
Numeric type Real or complex.
Set when you create a wave.
Use the Redimension operation (see page V-495) to change it.
Numeric precision Defines the range of numbers that the wave can hold.
Set when you create a wave.

Use the Redimension operation (see page V-495) to change it.

Length Number of data points in the wave. Also, size of each dimension for
multidimensional waves.

Set when you create a wave.
Use the Redimension operation (see page V-495) to change it.

X scaling (x0 and dx) Used to compute X values from point numbers. Also Y, Z and T scaling for
multidimensional waves.

The X value for point p is computed as X = x0 + p*dx.
Set by SetScale operation (see page V-544).
X units Used to auto-label axes. Also Y, Z and T units for multidimensional waves.
Set by SetScale operation (see page V-544).
Data units Used to auto-label axes.
Set by SetScale operation (see page V-544).
Data full scale For documentation purposes only. Not used.
Set by SetScale operation (see page V-544).

I1-99

Chapter II-5 — Waves

Property

Comment

Note

Dimension labels

Dependency Formula

Creation date/time
Modification date/time
Source folder

File name

Holds arbitrary text related to wave.
Set by Note operation (see page V-428) or via Browse Waves dialog.
Readable via note function (see page V-428).

Holds short (31 character) label for each dimension index and for each
dimension. See Dimension Labels on page I1-103.

Holds right-hand expression if wave is dependent.

Set when you execute a dependency assignment using := or the SetFormula
operation (see page V-540).

Cleared when you do an assignment using plain =.
Date & time when wave was created.

Date & time when wave was last modified.
Identifies folder containing wave’s source file, if any.

Name of wave’s source file, if any.

I1-100

Chapter

Multidimensional Waves

OVETVIBW ..ottt bbb bbb a bbbt a et 102
Creating Multidimensional Waves............c.ccouuiirieiiiice s 102
Programmer INOES..........cooiiiiii e 103
Dimension Labels ... e 103
Graphing Multidimensional Waves............cooireiiiiiccic e 104
Analysis on Multidimensional Waves...............cceeiiiiiiiicic e 104
Multidimensional Wave INAeXing............coeuiiiiieiiiiieec s 105
Multidimensional Wave ASSIZNMENtcooiirieiiiiiiiicc s 105
Vector (Waveform) to MatriX CONVETISION..........ccoiviriiuiiririeiciiiirieieerieeett ettt e 107
Matrix t0 MatriXx CONVETISION.......ccoviviieiieiieieie e 107

Multidimensional FOUTIETr TTAnSEOTIILcccuiiiiuiiiieiie ettt ettt e et e st e e sttt e e saaeesenseeessaeessnsaeesanneas 108

Chapter II-6 — Multidimensional Waves

Overview

Chapter II-5, Waves, concentrated on one-dimensional waves consisting of a number of rows. In Chapter
II-5, Waves, the rows were referred to as “points” and the symbol p stood for row number, which was called
“point number”. Scaled row numbers were called X values and were represented by the symbol x.

This chapter now extends the concepts from Chapter II-5, Waves, to allow waves having up to four dimen-
sions by adding the column, layer and chunk dimensions. The symbols g, r and s stand for column, layer
and chunk numbers. Scaled column, layer and chunk numbers are called Y, Z and T values and are repre-
sented by the symbols y, z and t.

We call a two-dimensional wave a “matrix”; it consists of rows (the first dimension) and columns (the
second dimension). After two dimensions the terminology becomes a bit arbitrary. We call the next two
dimensions “layers” and “chunks”.

Here is a summary of the terminology:

Dimension Number 0 1 2 3
Dimension Name row column layer chunk
Dimension Index p q r s
Scaled Dimension Index X y z t

Historical Note: Prior to Igor Pro 3.0, we used the term Y values to signify the values stored in a (one-dimen-
sional) wave. We now call these “D values” or “data values” and use the term “Y” for the columns dimen-
sion. You may find that in places we still refer to “Y values” when we really mean data values.

Creating Multidimensional Waves

Multidimensional waves can be created using the following extension to the Make operation:

Make/N= (nrows, ncols,nlayers, nchunks) waveName

The Redimension operation has been extended in the same way.

Examples:

Make/N=20 wavel

Makes a conventional (1D) wave with 20 points (rows).

Make/N= (20, 3) wave2d

Makes a matrix (2D) wave with 20 rows and 3 columns for a total of 60 points.

Redimension/N=(10,4) wavel,wave2d

Changes both wavel and wave2d so they have 10 rows and 4 columns.

The operations InsertPoints and DeletePoints take a flag (/M=dimensionNumber) to specify the dimension
into which points are inserted. For example:

InsertPoints/M=1 2,5,wave2d //M=1 means column dimension

inserts 5 new columns in front of column number 2. If the “/M=1" had been omitted or if /M=0 had been
used then 5 new rows would have been inserted in front of row number 2.

You can also create multidimensional waves using the Make operation with a list of data values. For exam-
ple, while

Make wavel= {1,2,3}
creates a conventional 1D wave containing a single column of 3 rows,

Make wave2= {{1,2,3},{4,5,6}}

I1-102

Chapter II-6 — Multidimensional Waves

creates a 2D wave containing 2 columns by 3 rows of data.

The Duplicate operation can create an exact copy of a multidimensional wave or, using the /R flag, extract
a subrange. Here is the syntax of the /R flag:

Duplicate/R=[startRow, endRow] [startCol,endCol] and so on...
You can use the character * for any end field to specify the last element in the given dimension or you can

just omit the end field. You can also specify just [] to include all of a given dimension. If the source wave
has more dimensions than you specify in the /R flag, then all of those dimensions are copied. Examples:

Make/N=(5,4,3) wave3d= p+10*g+100*r

Duplicate/R=[1,2][2,*] wave3d,wave3dl

duplicates rows 1 through 2, columns 2 through the end and all layers.

Duplicate/R=[][2,2]1[0,0] wave3d,wave3d2

creates a 3D wave consisting of all rows of column 2 layer 0 and containing 1 column and 1 layer. Igor con-
siders wave3d2 to be a 3 dimensional wave and not a 1 dimensional column vector because the column and
layer dimension numbers are not zero. This is a subtle distinction and can cause confusion. For example,

you may think you have extracted a 1D wave from a 3D object but you will find that wave3d2 will not show
up in the new graph dialog or other places where 1D vectors are required.

You can turn the 3D wave wave3d?2 into a 1D wave using the following command:
Redimension/N=(-1,0) wave3d2

The -1 value does not to change the number of rows whereas the 0 value for the number of columns indi-
cates that there are no dimensions past rows (in other words, no columns, layers or chunks).

Programmer Notes

For historical reasons, you can treat the symbols x and p like global variables, meaning that you can store
into them as well as retrieve their values by referencing them. Unlike x and p, y, z, t, q, r and s act like func-
tions and you can’t store into them.

The command “SetScale d” sets the data full scale and data units for a wave. Prior to Igor Pro 3.0, we used
“SetScale y” for this purpose. With the extension of Igor to multiple dimensions, “SetScale y” was needed
for setting the column dimension scaling and units. For backward compatibility “SetScale y” acts like “Set-
Scale d” when used on a 1D wave.

Here are some functions and operations that are useful in programming with multidimensional waves:

DimOffset, DimDelta, DimSize
FindDimLabel, SetDimLabel, GetDimLabel

Dimension Labels

A dimension label is a name associated with a dimension or with an index into an element of a dimension.
Dimension labels are primarily an aid to the Igor procedure programmer when dealing with waves in
which certain elements have distinct purposes. Dimension labels can be set when loading from a file, and
can be displayed, created or edited in a table (see Showing Dimension Labels on page 11-185).

You can give names to individual dimension indices in multidimensional or 1D waves. For example, if you
have a 3 column wave, you can give column 0 the name “red”, column 1 the name “green” and column 2
the name “blue”. You can use the names in wave assignments in place of literal numbers. To do so, you use
the % symbol in front of the name like so:

my3dwave [] [$red]=my3dwave [p] [$green] //Set red col equal to green col

To create a label for a given index of a given dimension, use the SetDimLabel operation.

I1-103

Chapter II-6 — Multidimensional Waves

For example:

SetDimLabel 1,0, red,my3dwave
The 1 is the dimension number (columns), 0 is the dimension index (column #0) and red is the label.

The function GetDimLabel returns a string containing the name associated with a given dimension and
index. For example:

Print GetDimLabel (my3dwave,1,0)

prints “red” into the history area.

The FindDimLabel function returns the index value associated with the given label. It returns the special
value -2 if the label is not found. This function is useful in user-defined functions so that you can use a
numeric index instead of a dimension label when accessing a wave in a loop. Accessing wave data using a
numeric index is faster than using a dimension label.

In addition to setting the name for individual dimension index values, you can set the name for an entire
dimension by using an index value of -1. For example:

SetDimLabel 1,-1,colors,my3dwave
Dimension names can contain up to 31 characters and may contain spaces and other normally illegal char-

acters if you surround the name in single quotes or if you use the $ operator to convert a string expression
to a name. For example:

wavename [%'a name with spaces']

wavename [$$"a name with spaces"]

Dimension names have the same characteristics as object names. See Object Names on page I11-411 for a
discussion of object names in general.

Graphing Multidimensional Waves

You can easily view two-dimensional waves as images and as contour plots using Igor’s built-in operations.
See Chapter 1I-14, Contour Plots, and Chapter II-15, Image Plots, for further information about these types
of graphs. You can also create waterfall plots where each column in the matrix wave corresponds to a sep-
arate trace in the waterfall plot. For more details, see Waterfall Plots on page II-287.

Additional facilities for displaying multi-dimensional waves in Igor Pro are provided by the Gizmo extension,
which create surface plots, slices through volumes and many other 3D plots. To get started with Gizmo,
choose Windows—New—3D Plots—3D Help.

It is possible to graph a subset of a wave, including graphing rows or columns from a multidimensional
wave. The New Graph dialog supports graphing subsets, and allows selection of 2D waves if the More
Choices button is clicked. See Subrange Display on page II-279 for more information.

Analysis on Multidimensional Waves

Igor Pro includes the following capabilities for analysis of multidimensional data:
e Multidimensional waveform arithmetic

® Matrix math operations

¢ Image processing

¢ Multidimensional Fast Fourier Transform

There are many analysis operations for 1D data that we have not yet extended to support multiple dimensions.
Multidimensional waves will not appear in dialogs for these operations. If you invoke them on multidimensional
waves from the command line or from an Igor procedure, Igor will treat the multidimensional waves as if they
were 1D. For example, the Smooth operation will treat a 2D wave consisting of n rows and m columns as if it were
a 1D wave with n*m rows. In some cases the operation will be useful. In other cases, it will make no sense.

I1-104

Chapter II-6 — Multidimensional Waves

Multidimensional Wave Indexing

You can use multidimensional waves in wave expressions and assignment statements just as you do with 1D
waves (see Indexing and Subranges on page 11-92). To specify a particular point in a wave, use the syntax:

wavename [rowIndex] [columnIndex] [layerIndex] [chunkIndex]

Similarly, to specify a point using scaled dimension indices, use the syntax:

wavename (xIndex) (yIndex) (zIndex) (tIndex)

rowlndex is the number, starting from zero, of the row of interest. It is an unscaled index. xIndex is simply
the row index, offset and scaled by the wave’s X scaling property, which you set using the SetScale opera-
tion (Change Wave Scaling in Data menu). Using scaled indices you can access the wave’s data using its
natural units. You can use unscaled or scaled indices, whichever is more convenient. column/y, layer/z and
chunk/t indices are analogous to row/x indices.

Using [] notation specifies that the index that you are supplying is an unscaled dimension index. Using () nota-
tion specifies that you are supplying a scaled dimension index. You can even mix the [] notation with () notation.

Here are some examples:

Make/N=(5,4,3) wave3d= p+10*g+100*r
SetScale/I x,0,1,"" wave3d
SetScale/I vy,-1,1,"" wave3d
SetScale/I z,10,20,"" wave3d

Print wave3d[0][1][2]

Print wave3d(0.5) [2] (15)

The first Print command prints 210, the value in row 0, column 1 and layer 2. The second Print command
prints 122, the value in row 2 (where x=0.5), column 2 and layer 1 (where z=15).

Since wave3D has three dimensions, we do not (and must not) specify a chunk (4th dimension) index.

There is one important difference between wave access using 1D waves versus multidimensional waves.
For 1D waves alone, Igor performs linear interpolation when the specified index value (scaled or unscaled)
falls between two points. For multidimensional waves, Igor returns the value of the element whose indices
are closest to the specified indices.

When a multidimensional wave is the destination of a wave assignment statement, you can specify a sub-
range for each dimension. You can specify an entire dimension by using []. For example:

wave3d[2][][1,2]= 3
sets row 2 of all columns and layers 1 and 2 to the value 3.

Note that indexing of the form [] (entire dimension) or [1,2] (range of a dimension) can be used on the left
hand side only. This is because the indexing on the left side determines which elements of the destination
are to be set whereas indexing on the right side identifies a particular element in the source which is to con-
tribute to a particular value in the destination.

Multidimensional Wave Assignment

As with one-dimensional waves (waveform data), you can assign a value to a multidimensional wave using
a wave assignment statement.

Make/O/N=(3,3) waveO 2D, wavel 2D, wave2 2D
wavel 2D = 1.0; wave2 2D = 2.0
waveO 2D = wavel 2D / wave2 2D

The last command sets all elements of wave0O_2D equal to the quotient of the corresponding elements of
wavel_2D and wave2_2D.

I1-105

Chapter II-6 — Multidimensional Waves

Important: Wave assignments as shown in the above example where waves on the right hand side do not
include explicit indexing are defined only when all waves involved have the same dimensionality. The
result of the following assignment is undefined and may produce surprising results.

Make/O/N=(3,3) wave33
Make/O/N=(2,2) wave2?2

wave33= wave2?2
Whenever waves of mismatched dimensionality are used you should specify explicit indexing as described here.

In a wave assignment, Igor evaluates the right hand side one time for each element specified by the left hand
side. During this evaluation, the symbols p, q, r and s take on the value of the row, column, layer and chunk,
respectively, of the element in the destination for which a value is being calculated. So,

Make/O/N=(5,4,3) wave3D = 0
Make/O/N=(5,4) wave2d = 999
wave3D[][][0] = wave2DI[p] [g]

stores the contents of wave2D in layer 0 of wave3D. In this case, the destination (wave3D) has three dimen-
sions, so p, q and r are defined and s is undefined. The following discussion explains this assignment and
presents a way of thinking about wave assignments in general.

The left hand side of the assignment specifies that Igor is to store a value into all rows (the first []) and all
columns (the second []) of layer zero (the [0]) of wave3D. For each of these elements, Igor will evaluate the
right hand side. During the evaluation, the symbol p will return the row number of the element in wave3D
that Igor is about to set and the symbol q will return the column number. The symbol r will have the value
0 during the entire process. Thus, the expression wave2D[p][q] will return a value from wave2D at the cor-
responding row and column in wave3D.

As the preceding example shows, wave assignments provide a way of transferring data between waves.
With the proper indexing, you can build a 2D wave from multiple 1D waves or a 3D wave from multiple
2D waves. Conversely, you can extract a layer of a 3D wave into a 2D wave or extract a column from a 2D
wave into a 1D wave. Here are some examples that illustrate these operations.

// Build a 2D wave from multiple 1D waves (waveforms)

Make/0O/N=5, waveO=p, wavel=p+l, wavel2=p+2 // 1D waveforms
Make/O/N=(5,3) wave(O 2D

wave0 2D[][0] = waveO[p] // Store into all rows, column 0

wave0 2D[][1] = wavell[p] // Store into all rows, column 1

waveO 2D[][2] = wave2[p] // Store into all rows, column 2

// Build a 3D wave from multiple 2D waves

Duplicate/O wave0O 2D, wavel 2D; wavel 2D *= -1

Make/O/N=(5,3,2) wave(O 3D

waveO 3D[][][0]= waveO 2D[p][q] // Store into all rows/cols, layer O
waveO 3D[][][1]= wavel 2D[p]l[g] // Store into all rows/cols, layer 1
// Extract a layer of a 3D wave into a 2D wave

waveO 2D = waveO 3DI[p] [g] [0] // Extract layer 0 into 2D wave

// Extract a column of a 2D wave into a 1D wave

wave0 = waveO 2D[p] [0] // Extract column 0 into 1D wave

To understand assignments like these, first figure out, by looking at the indexing on the left hand side,
which elements of the destination wave are going to be set. (If there is no indexing on the left then all ele-
ments are going to be set.) Then think about the range of values that p, g, r and s will take on as Igor eval-
uates the right hand side to get a value for each destination element. Finally, think about how these values,
used as indices on the right hand side, select the desired source element.

To create such an assignment, first determine the indexing needed on the left hand side to set the elements of
the destination that you want to set. Then think about the values that p, g, r and s will take on. Then use p, g,
r and s as indices to select a source element to be used when computing a particular destination element.

I1-106

Chapter II-6 — Multidimensional Waves

Here are some more examples:

// Extract a ROW of a 2D wave into a 1D wave
Make/O/N=3 rowl
rowl = wave0O 2D[1] [p] // Extract row 1 of the 2D wave

In this example, the row index (p) for the destination is used to select the source column while the source row
is always 1.

// Extract a horizontal slice of a 3D wave into a 2D wave
Make/O/N=(2,3) slice R2 // Slice consisting of all of row 2
slice R2 = waveO 3D[2] [q] [p] // Extract row 2, all columns/layers

In this example, the row data for slice_R2 comes from the layers of wave0_3D because the p symbol (row
index) is used to select the layer in the source. The column data for slice_R2 comes from the columns of
wave(_3D because the q symbol (column index) is used to select the column in the source. All data comes
from row 2 in the source because the row index is fixed at 2.

You can store into a range of elements in a particular dimension by using a range index on the left hand
side. As an example, here are some commands that shift the horizontal slices of wave0_3D.

Duplicate/O wave0O 3D, tmp waveO 3D

waveO 3D[0][][] = tmp waveO 3D[4][g][r]
waveO 3D[1,4][][] = tmp waveO 3D[p-1][g][r]
KillWaves tmp waveO 3D

The first assignment transfers the slice consisting of all elements in row 4 to row zero. The second assign-
ment transfers slice n-1 to slice n. To understand this, realize that as p goes from 1 to 4, p-1 indexes into the
preceding row of the source.

Vector (Waveform) to Matrix Conversion

Occasionally you will may need to convert between a vector form of data and a matrix form of the same
data values. For example, you may have a vector of 16 data values stored in a waveform named sixteenVals
that you want to treat as a matrix of 8 rows and 2 columns.

Though the Redimension operation normally doesn’t move data from one dimension to another, in the
special case of converting to or from a 1D wave Redimension will leave the data in place while changing
the dimensionality of the wave. You can use the command:

Make/O/N=16 sixteenVals // 1D
Redimension/N=(8,2) sixteenVals // now 2D, no data lost

to accomplish the conversion. When redimensioning from a 1D wave, columns are filled first, then layers,
followed by chunks. Redimensioning from a multidimensional wave to a 1D wave doesn’t lose data, either.

Matrix to Matrix Conversion

To convert a matrix from one matrix form to another, don’t directly redimension it to the desired form. For
instance, if you have a 6x6 matrix wave, and you would like it to be 3x12, you might try:
Make/O/N=(6,6) thirtySixVals //2D

Redimension/N=(3,12) thirtySixVals //this loses the last three rows

but Igor will first shrink the number of rows to 3, discarding the data for the last three rows, and then add
6 columns of zeroes.

The simplest way to work around this is to convert the matrix to a 1D vector, and then convert it to the new
matrix form:

Make/O/N=(6,6) thirtySixVals // 2D
Redimension/N=36 thirtySixVals // 1D vector preserves the data
Redimension/N=(3,12) thirtySixVals // data preserved

I1-107

Chapter II-6 — Multidimensional Waves

Multidimensional Fourier Transform

Igor’s FFT and IFFT routines are mixed-radix and multidimensional. Mixed-radix means you do not need
a power of two number of data points (or dimension size). There is only one restriction on the dimensions
of a wave: when performing a forward FFT on real data, the number of rows must be even. Note, however,
that if a given dimension size is a prime number or contains a large prime in its factorization, the speed will
be reduced to that of a normal Discrete Fourier Transform (i.e., the number of operations will be on the
order of N rather than Nelog(N)). For more information about the FFT, see Fourier Transforms on page
I1I-231 and the FFT operation on page V-148.

I1-108

Chapter

Numeric and String Variables

OVETVIEW ..ttt sttt st ettt ettt ettt s a bbbt et e b et et et et et e bt e st saesb e b e b e sa et ensenneneen 110
Creating Global Variables.............cccocoviiiiii e 110
UseSs FOT GlODal VATiables.......c.coueuirieuirieinieirieirtcirieeneesesieteie sttt ettt et st sttt s sa e ee 110
Variable INAINESveuieeieieeeieeeeie ettt ettt ettt et e b e st e s be st e s e be e et e st e st eneeseeseesesseeseesesensansansaneensenes 110
System Variables ..o e 110
USET VATIADIES ...ttt sttt ettt et ea sttt b e b et e et et e st enteneeseeseeseesesseesessessensansensanean 111
Special User Variables ... 111
INUMETIC VATIADLES ...ttt ettt ettt ettt et st e st e e s et et e st et eseeseesessessebessansensensens 111
SHING VATIabIeScuviiii s 112

Local and Parameter Variables in PTOCEAULESooovviviieieieiieceeeeeeeeeeeeee et eete s e e s eaeeesanes 113

Chapter II-7 — Numeric and String Variables

Overview

This chapter discusses the properties and uses of global numeric and string variables. For the fine points of
programming with global variables, see Accessing Global Variables and Waves on page IV-52.

Numeric variables are double precision floating point and can be real or complex. String variables can hold
an arbitrary number of characters. Igor stores all global variables when you save an experiment and restores
them when you reopen the experiment.

Numeric variables or numeric expressions containing numeric variables can be used in any place where literal
numbers are appropriate including as operands in assignment statements and as parameters to operations,
functions or macros (but require parentheses in operation flags, see Reference Syntax Guide on page V-12).

String variables or string expressions can be used in any place where strings are appropriate. String variables can
also be used as parameters where Igor expects to find the name of an object such as a wave, variable, graph, table
or page layout. For details on this see Converting a String into a Reference Using $ on page IV-49.

Creating Global Variables

There are 20 built-in numeric variables (KO ... K19), called system variables, that exist all the time. Igor uses
these mainly to return results from the CurveFit operation. All other variables are user variables. User vari-
ables can be created in one of two ways:

e Automatically in the course of certain operations.

¢ Explicitly by the user, via the Variable/G and String/G operations.

When you create a variable directly from the command line using the Variable or String operation, it is
always global and you can omit the /G flag. You need /G in Igor procedures to make variables global. The
/G flag has a secondary effect — it permits you to overwrite existing global variables.

Uses For Global Variables

Global variables have two properties that make them useful: globalness and persistence. Since they are
global, they can be accessed from any procedure. This provides an easy way to communicate values from
one procedure to another. Since they are persistent, you can use them to store settings over time.

Variable Names

Variable names consist of 1 to 31 characters. The first character must be alphabetic. The remaining charac-
ters can be alphabetic, numeric or the underscore character. Variable names must not conflict with the
names of other Igor objects, functions or operations. Names in Igor are case insensitive. You can rename a
variable using the Rename operation, or the Rename Objects dialog in the Misc menu. See Object Names
on page 11I-411 for more information.

System Variables

System variables are built in to Igor. They are mainly provided for compatibility with older versions of Igor
but are sometimes useful as “scratch” variables. You can see a list of system variables and their values by
choosing the Object Status item in the Misc menu.

There are 20 system variables named K0,K1...K19 and one named veclen. The K variables are used by the
curve fitting operations but are otherwise free for your use.

The veclen variable is present for compatibility reasons. In previous versions of Igor, it contained the default
number of points for waves created by the Make operation. This is no longer the case. Make will always create
waves with 128 points unless you explicitly specify otherwise using the /N=(<number of points>) flag.

I1-110

Chapter II-7 — Numeric and String Variables

Although the CurveFit operation stores results in the K variables, it does so only for compatibility reasons
and it also creates user variables and waves to store the same results.

However, the CurveFit operation does use system variables for the purpose of setting up initial parameter
guesses if you specify manual guess mode. You can also use a wave for this purpose if you use the
kwCWave keyword. See the CurveFit operation on page V-82.

It is best to not rely on system variables unless necessary. Since Igor writes to them at various times, they
may change when you don’t expect it.

The Data Browser does not display system variables since this tends to obscure the (usually more interest-
ing) user variables.

Note: System variables are stored on disk as single precision values so that they can be read by older
versions of Igor. Thus, you should store values that you want to keep indefinitely in your own
global variables.

User Variables

You can create your own global variables by using the Variable/G (see Numeric Variables on page II-111)
and String/G operations (see String Variables on page II-112). Variables that you create are called “user

variables” whether they be numeric or string. You can browse the global user variables by choosing the Object
Status item in the Misc menu. You can also use the Data Browser window (Data menu) to view your variables.

Global user variables are mainly used to contain persistent settings used by your procedures. They are also
sometimes used to pass results from a macro to the macro that called it.

Special User Variables

In the course of some operations, Igor automatically creates special user variables. For example, the curve
fitting operation creates the user variable V_chisq and others to store various results generated by the
curve fit. The names of these variables always start with the characters “vV_" for numeric variables or “S_"
for string variables. The meaning of these variables is documented along with the operations that generate
them in Chapter V-1, Igor Reference.

In addition, Igor sometimes checks for V_ variables that you can create to modify the default operation of
certain routines. For example, if you create a variable with the name V_FitOptions, Igor will use that to
control the CurveFit, FuncFit and FuncFitMD operations. The use of these variables is documented along
with the operations that they affect.

When used inside interpreted procedures (defined using Proc or Macro), V_and S_ variables are created as
local variables. When used inside compiled procedures (defined using Function), such variables can be local
(but might be global under certain circumstances). See Accessing Variables Used by Igor Operations on
page IV-103 for details.

Numeric Variables

You create numeric user variables by using the Variable command from the command line or in a proce-
dure. The syntax for the Variable command is:

Variable [flags] varName [=numExpr] [,varName [=numExpr]l]...

There are three optional flags parameters:

/C specifies complex variable.
/D obsolete. Used in previous versions to specify double precision (now all variables are double precision).
/G specifies variable is to be global and overwrites any existing variable.

The variable is initialized when it is created if you supply the initial value with a numeric expression using
=numExpr. If you create a numeric variable and specify no initializer, it is initialized to zero.

II-111

Chapter II-7 — Numeric and String Variables

You can create more than one variable at a time by separating the names and optional initializers for mul-
tiple variables with a comma.

If used in a procedure, the new variable is local to that procedure unless the /G (global) flag is used. If used
on the command line, the new variable is always global.
Here is an example of a variable creation with initialization:

Variable vl=1.1, v2=2.2, v3=3.3*sin(v2) /exp (vl)
Since the /C flag was not specified, the data type of v1, v2 and v3 is double precision real.

Since the /G flag was not specified, these variables would be global if you invoked the Variable operation
directly from the command line or local if you invoked it in a procedure.

Variable/G varname can be invoked whether or not a variable of the specified name already exists. If it
does exist as a variable, its contents are not altered by the operation unless the operation includes an initial
value for the variable.

To assign a value to a complex variable, use the cmplx () function:

Variable/C cvl = cmplx(1l,2)

You can kill (delete) a global user variable using the Data Browser or the KillVariables operation. The
syntax is:

KillVariables [flags] [variableName [,variableName]...]

There are two optional flags:

/A Kkills all global variables in the current data folder. If you use /A, omit variableName.

/Z doesn’t generate an error if a global variable to be killed does not exist. To kill all global variables
in the current data folder, use KillVariables/A/Z.

For example, to kill global variable cv1 without worrying about whether it was previously defined, use the
command:

KillVariables/Z cvl

Killing a variable reduces clutter and saves a bit of memory. You can not kill a system variable or local variable.

String Variables

You create user string variables by using a St ring declaration on the command line or in a procedure. The
syntax is:

String [/G] strName [=strExpr] [,strName [=strExprl...]
The optional /G flag specifies that the string is to be global, and it overwrites any existing string variable.

The string variable is initialized when it is created if you supply the initial value with a string expression using
=strExpr. If you create a string variable and specify no initializer it is initialized to the empty string ().

You can create more than one string variable at a time by separating the names and optional initializers for
multiple string variables with a comma.

If used in a procedure, the new string is local to that procedure unless the /G (global) flag is used. If used
on the command line, the new string is always global.

Here is an example of a variable creation with initialization:

String strl = "This is string 1", str2 = "This is string 2"

Since /G was not used, these strings would be global if you invoked String directly from the command line
or local if you invoked it in a procedure.

I1-112

Chapter II-7 — Numeric and String Variables

String/G strName can be invoked whether or not a variable of the given name already exists. If it does
exist as a string, its contents are not altered by the operation unless the operation includes an initial value
for the string.

You can kill (delete) a global string using the Data Browser or the Kil1Strings operation. The syntax is:

KillStrings [flags] [stringName [,stringName]...]

There are two optional flags:

/A Kkill all global strings in the current data folder. If you use /A, omit stringName.

/Z doesn’t generate an error if a global string to be killed does not exist. To kill all global strings in the
current data folder, use KillStrings/A/Z.

For example, to kill global string myGlobalString without worrying about whether it was previously
defined, use the command:

KillStrings/Z myGlobalString
Killing a string reduces clutter and saves a bit of memory. You can not kill a local string.

There are a number of functions that return or operate on string expressions. See Strings on page V-9 for a
list. There are also a number of ways to manipulate string variables. See Strings on page IV-12.

Local and Parameter Variables in Procedures

You can create variables in macros and user defined functions as parameters or local variables. These vari-
ables exist only while the macro or function is running. They can not be accessed from outside the macro
or function and do not retain their values from one invocation of the macro or function to the next. See Local
Versus Global Variables on page IV-48 for more information.

I1-113

Chapter II-7 — Numeric and String Variables

I1-114

Chapter

Data Folders

OVEIVICW ...ttt ettt e ettt e et e e e etaeeeeae e eeasaeeeeteaeeesseeeesseeeeasseeenseseensseesessseeesseseenseesesseeeassseeesssesennseas 116
Data FOlder SYNtaX........ccccoviiiiiiiiiiiiiiiiii e 117
Data Folder Operations and FUNCHONS..........c.couoiiieiiiiiiec e 118
Data Folders Reference FUNCHONSc..ooviiiiieeeeeieeteeeee ettt ettt et e eeteeeaeeeveeeveereesrneeneeeseas 119
Data Folders and COmMMANGS.........c.cooieieiinrieereeeieeeieeeeeeeteeeeeeeteeeaeeeteeeseseeveeesseesseeesseesseestesessensessnseesseesnses 119
Data Folders and User-Defined FUNCHONS..........cocveciieieiiiceecieeeeete ettt reeae s 119
Data Folders and WINAOW IMACIOSccceoveeieirieiietietieteecteeteeiteeeesteeeetessaessesseessessaensesssaseessesseesseses 119
Data Folders and Assignment Statements..............oocveeiiiicieieicciccce s 120
Data FOlAers and CONTIOLS.......cuicoiiiiiieieeieeereeetee et eete et eeteeeeteeeteeeaeeeeteeeeeeeteeesseeseesteseseenseesnseenseeeseas 120
Data FOIAETS Qnd TTaCES.......coveeeeeeteeeteeetee ettt et et eeeeete e eeeeete e eaeeeseeeseseseeesseeseeesseeseestesessenseesnseenseenseas 121
Using Data FOLAETSoiiiiieiiiicte et 121
Hiding Waves, Strings, and Variables...........c.c.ooooiiiiiicc e 121
Separating Similar Data ..o 121
Using Data Folders EXample...........oooiiiiiiiiiiiicc st 122
Problems With Data FOLAEIScoviiiiieiiceeceeceeeeeeee ettt ettt et eae e v eetveeteesteeeeeeteeenseenseesaeas 124
DAt BIOWSET ...ttt ettt e e et e eet e e et e e eeteeeeeabeeeeaaeeeeateseeesseeeessseeesseseenseeaessaeeessseeesseeeennneas 124
CUITENTE Data FOLAOT ..eviiveieeiieeteeeeeeetee ettt ettt et e e et et s v e eaeeeveeetseesseeetesenseeseesaneeseenseas 125
Display CheCKDOXEScccuiiiiieiiiicieiee ettt 126
TNFO CECKDOX ottt ettt ettt ettt e et e e eete et eeaeeeteseaseeeaseeaseeetseenseentesenseenseessssenneenseas 126
PlOt CECKDOX ...c.veieeiietieeeeeee ettt ettt ettt et ete et e eveeeteeeteeeeaeeeseseaseeesseeaseensseesseetesensesnseesresenseenseas 126
INEW FOLAOT BULLOM ..ottt ettt ettt et eae et eav e e aeeeaeseeteeesseebesesseenseesrneenneenseas 126
Browse EXpt. BULON ... 127
Save COPY BULLON ... 128
DIELEtE BULEOM ...ttt ettt ettt ettt et ete et eetaeeteeeteeeaeeeteeeaseeeseeesesensseesseensesesseenseesresenseenseas 128
The Preferences BULLOIco.iiiiiieeccee ettt ettt eveeeae et s eeteeeaeeeteeeaseeseeeteseseeteesnneeseeennas 128
The EXecute CINd BUTEON ...c.viiiuiieeeeeiee ettt ettt ettt eveeeae e eteeeteeeaaeeebesesseenseesansenneenseas 129
Using the Data Browser Find Dialogcccooeiiiiiiiiiicicc e 129
Programming the BrOWSETc..couiiiiiiiiii e 130
Browser POP-UpP MENU ... 130
Other Browser OPerations.............oueecieiiicieieiicee et 130

Data BrOWSET SIOTECULS ...ooiiuviiiieiie ettt et e et e et e e et e eeaeeesteeessaaeesenseeesnseessnseeessseeesasseesnns 131

Chapter 1I-8 — Data Folders

Overview

Using data folders, you can store your data within an experiment in a hierarchical manner. Hierarchical
storage is useful when you have multiple sets of similar data. By storing each set in its own data folder, you
can organize your data in a meaningful way and also avoid name conflicts.

Data folders contain four kinds of data objects:
e Waves

e Numeric variables

® String variables

e Other data folders

Igor’s data folders are very similar to a computer’s hierarchical disk file system except they reside wholly
in memory and not on disk. This similarity can help you understand the concept of data folders but you
should take care not to confuse them with the computer’s folders and files.

Data folders are particularly useful when you conduct several runs of an experiment. You can store the data
for each run in a separate data folder. The data folders can have names like “runl”, “run2”, etc., but the
names of the waves and variables in each data folder can be the same as in the others. In other words, the
information about which run the data objects belong to is encoded in the data folder name, allowing the
data objects themselves to have the same names for all runs. You can write procedures that use the same
wave and variable names regardless of which run they are working on.

Data folders are very handy for programmers who need to create temporary waves during a procedure.
You can create a temporary data folder with a name designed not to conflict with any other Igor object
names and then create waves without having to worry about conflict. When done, you can kill the data
folder and everything it contains with a single command rather than having to kill waves, variables, and
strings. You can also use a data folder to store persistent waves and global variables not intended to be seen
by the end user. As a programmer, you can use nested data folders as a sort of data structure.

All operations in Igor Pro are data-folder aware. On the command line you can specify waves from several
different data folders within one command.

You can use the Data Browser window (Data menu) to see the data folder hierarchy and to set the current
data folder:

I pata Browser g@]

Current Data Folder.

Path to the Current Data Folder. —j= [root:Folderi:

Display ‘rom ﬂ—— TOp data folder.

v wWawves
| “ariahles =3 root
[v Strings 5 wave0

Current Data Folder. . S = 3 Foldert
| Plot] wavel

Mew Falder.. E :ﬁ;em
e subFolder
=...[23 Folder2
Browse Expt & wave2
Help 8 myString
Preferences..
|

You can use the Data Browser not only to see the hierarchy and set the current data folder but also to:
* Create new data folders.

* Move, duplicate, rename and delete objects.

* Browse other Igor experiment files and load data from them into memory.

® Save a copy of data in the current experiment to an experiment file or folder on disk.

® See and edit the contents of variables, strings or waves in the information pane by selecting an object

II-116

Chapter 1I-8 — Data Folders

* See a simple plot of 1D or 2D waves by selecting one wave at a time in the main list while the Plot
pane is visible.

® See a simple plot of a wave while browsing other Igor experiments.
* See variable, string and wave contents by double-clicking their icons.

® See a simple histogram or wave statistics for one wave at a time.

Before using data folders, be sure to read Using Data Folders on page 1I-121, and Problems with Data
Folders on page I1-124.

Programmers should read Programming with Data Folders on page IV-148.

A similar browser is used for wave selection in dialogs. For details see Dialog Wave Browser on page II-175.

Data Folder Syntax

Data folders are named objects like other Igor objects such as waves and variables. Data folder names follow
the same rules as wave names. See Liberal Object Names on page III-411.

Like the Macintosh file system, Igor Pro’s data folders use the colon character (:) to separate components
of a path to an object. This is analogous to Unix which uses / and Windows which uses \. (Reminder: Igor’s
data folders exist wholly in memory while an experiment is open. It is not a disk file system!)

A data folder named “root” always exists and contains all other data folders.

A given object can be specified in a command using;:
e A full path

® A partial path

* Just the object name

The object name alone can only be used when the current data folder contains the object.

A full path starts with “root” and does not depend on the current data folder. A partial path starts with “:”
and is relative to the current data folder.

Assume the data folder structure shown below, where the arrow indicates that folderl is the current data folder.

e root
........ fed wweavert
B =3 foldert
o[wavez
5[subfoldert
[weave 3
&3 folder2
] waved

Each of the following commands creates a graph of one of the waves in this hierarchy:

Display wave?2

Display :subfolderl:wave3

Display root:folderl:subfolderl:wave3
Display ::folder2:waved

The last example illustrates the rule that you can use multiple colons to walk back up the hierarchy: from
folder1 (the current data folder), up one level, then down to folder2 and wave4. Here is another valid (but
silly) example:

Display root:folderl:subfolderl:::folder2:wave4

I1-117

Chapter 1I-8 — Data Folders

Occasionally you will need to specify a data folder itself rather than an object in a data folder. In that case,
just leave off the object name. The path specification should therefore have a trailing colon. However, Igor
will generally understand what you mean if you forget the trailing colon.

If you need to specify the current data folder, you can use just a single colon. For example:

KillDataFolder

kills the current data folder (and all its contents) and then sets the current data folder to the parent of the
current. Nonprogrammers might prefer to use the Data Browser to delete data folders.

Recall that the $ operator converts a string expression into a single name. Since data folders are named, the
following is valid:

String dfl = "folderl", df2="subfolderl"
Display root:$(dfl) :$(df2) :wave3

This is a silly example but the technique would be useful if df1 and df2 were parameters to a procedure.
Note that parentheses must be used in this type of statement. That is a result of the precedence of $ relative to :.

When used at the beginning of a path, the $ operator works in a special way and can (and must) be used on
the entire path:

String pathl = "root:folderl:subfolderl:wave3"
Display $pathl

When liberal names are used within a path, they must be in single quotes. For example:

Display root:folderl:'subfolder 1':'wave 3'
String pathl = "root:folderl:'subfolder 1':'wave 3'"
Display $pathl

However, when a simple name is passed in a string, single quotes must not be used:

Make 'wave 1'

String name

name = "'wave 1'" // Wrong.
name = "wave 1" // Correct.
Display S$name

Data Folder Operations and Functions

Most people will use the Data Browser (Data menu) to create, view and manipulate data folders. The fol-
lowing operations will be mainly used by programmers, who should read Programming with Data Folders
on page IV-148.

NewDataFolder path

SetDataFolder path

KillDataFolder path
DuplicateDataFolder srcPath, destPath
MoveDataFolder srcPath, destPath
MoveString srcPath, destPath
MoveVariable srcPath, destPath
MoveWave wave, destPath [newname]
RenameDataFolder path, newName

Dir

The following are functions that are used with data folders.

GetDataFolder (mode)

CountObjects (pathStr, type)
GetIndexedObjName (pathStr, type, index)
GetWavesDataFolder (wave, mode)

I1-118

Chapter 1I-8 — Data Folders

DataFolderExists (pathStr)
DataFolderDir (mode)

Data Folders Reference Functions

As of Igor Pro 6.1, function programmers can utilize data folder references in place of paths. Data folder
references are lightweight objects that refer directly to a data folder whereas a path, consisting of a sequence
of names, has to be looked up in order to find the actual target folder.

Here are functions that work with data folder references:

GetDataFolderDFR ()
GetIndexedObjNameDFR (dfr, type, index)
GetWavesDataFolderDFR (wave)
CountObjectsDFR (dfr, type)
DataFolderRefStatus (dfr)
NewFreeDataFolder ()

For information on programming with data folder references, see Data Folder References on page IV-63.

Data Folders and Commands

Igor normally evaluates commands in the context of the current data folder. This means that, unless qualified
with a path to a particular data folder, object names refer to objects in the current data folder. For example:

Macro MyMacro ()

Make wavel

Variable/G myGlobalVariable
EndMacro

creates wavel and myGlobalVariable in the current data folder. Likewise executing:
WaveStats wavel

creates WaveStats output variables (V_avg, etc.) in the current data folder.

Data Folders and User-Defined Functions

You must exercise some care when accessing global variables from “data-folder ignorant” user-defined
functions. See Accessing Global Variables and Waves on page IV-52 for details.

Data Folders and Window Macros

Window macros are evaluated in the context of the root data folder. Window macros begin with the
Window keyword, as in the example below. Macros that begin with the “Macro” or Proc keywords evaluate
their commands in the context of the current data folder.

Evaluating window macros this way ensures that a window is recreated correctly regardless of the current
data folder, and provides some compatibility with window macros created with prior versions of Igor Pro
which didn’t have data folders.

This means that object names within window macros or functions that don’t explicitly contain a data folder path
refer to objects in the root data folder. This is important when the current data folder is not the root data folder.

For example, given identically named waves organized as follows:

* root
........ B myData
&2 subfalder

I1-119

Chapter 1I-8 — Data Folders

A window recreation macro for a graph of root:myData (whose tag shows the wave’s data folder) will
resemble the following:

root

Window GraphO () : Graph
PauseUpdate; Silent 1 // building window. ..
Display myData // note: no data folder specified

Tag/N=text0/X=21.15/Y=35.00 myData, 50
AppendText/N=text0 "\\{\"%s\",GetWavesDataFolder (TagWaveRef (),0) }"
EndMacro

Observe that myData is referred to in the Display command without its data folder (root:myData would be
the fully qualified name of the wave object). If you change the current data folder to the subfolder and run
the window macro, the resulting graph will be identical because the myData wave in the root data folder
would be graphed.

\

Window Graphl () : Graph

PauseUpdate; Silent 1 // building window. ..

String fldrSav= GetDataFolder (1)

SetDataFolder root:subfolder: // note: data folder is specified

Display myData

SetDataFolder fldrSav

Tag/N=text0/X=21.15/Y=35.00 myData, 50

AppendText/N=text0 "\\{\"%s\",GetWavesDataFolder (TagWaveRef (),0)}"
EndMacro

Data Folders and Assignment Statements

Wave and variable assignment statements are evaluated in the context of the data folder containing the
wave or variable on the left-hand side of the statement:

root:subfolder:wavel = wavel + varl

is a shorter way of writing the equivalent:

root:subfolder:wavel = root:subfolder:wavel + root:subfolder:varl

This rule also applies to dependency formulae which use := instead of = as the assignment operator.

Data Folders and Controls
ValDisplay controls evaluate their value expression in the context of the root data folder.

SetVariable controls remember the data folder in which the controlled global variable exists, and continue
to function properly when the current data folder is different than the controlled variable.

Note: The system variables (KO through K19) belong to no particular data folder (they are available
from any data folder), and there is only one copy of these variables. If you create a SetVariable
controlling KO while the current data folder is “aFolder”, and another SetVariable controlling KO
while the current data folder is “bFolder”, they are actually controlling the same KO.

I1-120

Chapter 1I-8 — Data Folders

See Chapter 11I-14, Controls and Control Panels, for details about controls.

Data Folders and Traces

You cannot tell by looking at a trace in a graph which data folder it resides in. You could save and examine the
graph window recreation macro. The easiest way to find out what data folder a trace’s wave resides in is to use
the trace info help. On Macintosh, press Command-Option-Control and click on the trace in the graph window.
On Windows, press Shift+F1 to summon context-sensitive help and then click on the trace to get trace info.

Another method is to use the Modify Trace Appearance dialog. When you press and hold down the mouse
button on a trace in the dialog’s Trace list, Igor displays data folder (and X wave) information where the
commands are usually shown:

Modify Trace Appearance
Trace Mode

Select one trace here. wavel A Lines between points [+
wavel

Color: EI

Line

The Data Folder containing sze 100 | Grouping: "None [%)
the trace’s wave is shown - A [Error bars...
here, along with the trace’s il ([Offset.. @ Gaps (setasf(2)...)
X wave, if any. ————— [ootiuowes
ws rootiwavel
Do It To Cmd Line To Clip (" Help) (Cancel)

Using Data Folders

You can use data folders for many purposes, just like you use the folders on your hard disk for organizing
files in many different ways. Here are two common uses of data folders.

Hiding Waves, Strings, and Variables

Sophisticated Igor procedures may need a large number of global variables, strings and waves that aren’t
intended to be directly accessed by the user. The programmer who creates these procedures should keep all such
items within data folders they create with unique names designed not to conflict with other data folder names.

Users of these procedures should leave the current data folder set to the data folder where their raw data
and final results are kept, so that the procedure’s globals and waves won’t clutter up the dialog lists.

Programmers creating procedures should read Programming with Data Folders on page IV-148.

Separating Similar Data

One situation that arises during repeated testing is needing to keep the data from each test “run” separate
from the others. Often the data from each run is very similar to the other runs, and may even have the same
name. Without data folders you would need to choose new names after the first run.

By making one data folder for each test run, you can put all of the related data for one run into each folder.
The data can use identical names, because other identically named data is in different data folders.

Using data folders also keeps the data from various runs from being accidently combined, since only the data in
the current data folder shows up in the various dialogs or can be used in a command without a data folder name.

The Wavemetrics-supplied “Multi-peak Fitting” example experiment’s procedures work this way: they
create data folders to hold separate peak curve fit runs and global state information.

I1-121

Chapter 1I-8 — Data Folders

Using Data Folders Example

This example will use data folders to:

¢ Joad data from two test runs into separate data folders
® create graphs showing each test run by itself

* create a graph comparing the two test runs
First we’ll use the Data Browser to create a data folder for each test run.

Open the Data Browser (in the Data menu), and set the Current Data Folder to root.
Click the root data folder, and click the New Folder button. Enter “Runl” for the new & [root
data folder’s name. Click New Folder again and enter “Run2”. The Data Browser 3 Run
window should resemble the one shown here.
[Runz

Now let’s load sample data into each data folder, starting with Runl.

Set the Current Data Folder to Runl, then choose Load Delimited Text from the Data menu’s Load Data
submenu. Select the CSTATIN.ASH file from the Sample Data subfolder of the Learning Aids folder, and
click Open. In the resulting Load Waves dialog, name the loaded wave “rawData”. We will pretend this
data is the result of Run 1. Type “Display rawData” on the command line to graph the data.

Set the Current Data Folder to Run2, and repeat the wave loading steps, selecting the CSTATIN.ASV file
instead. In the resulting Load Waves dialog, name the loaded wave “rawData”. We will pretend this data
is the result of Run 2. Repeat the “Display rawData” command to make a graph of this data.

Notice that we used the same name for the loaded data. No conflict exists 5 root
because the other rawData wave is in another data folder. At this point, the & [Run
Data Browser should look something like this example (we’ve deselected

: . : : o] rawDiata
Display Variables and Display Strings).

* &--f Runz
The graphs of our loaded waves look like this:] rawDiata
[— rawData (CSTATIN.ASH) | —— rawData (CSTATIN.ASV) |
L0 N) 15 —
2] S 10+
0 | | | | | 0 | | | | |
0 100 200 300 400 500 0 100 200 300 400 500
Graph of data in data folder “Runl” Graph of data in data folder “Run2”

You can easily make a graph displaying both rawData waves to compare them better. Using the New Graph
dialog, make sure Show Data Folders is selected in the Wave Browsers (see Dialog Wave Browser on page
II-175). You can then select both waves to display in a graph. Alternatively, you can execute two commands
on the Command Line: first execute Display rawData, change the current data folder to Runl, and then
execute AppendToGraph rawData (or use the Append To Graph dialog)

I1-122

Chapter 1I-8 — Data Folders

., | - — - rawData (from Run2)|

—— rawData (from Run1, offset AY=-1000) ||

I T T T T T
0 100 200 300 400 500

You can change the current data folder to anything you want and the graphs will continue to display the
same data; graphs remember which data folder the waves belong to, and so do graph recreation macros.
This is often what you want, but not always.

Suppose you have many test runs in your experiment, each safely tucked away in its own data folder, and
you want to “visit” each test run by looking at the data using a single graph which displays data from the
test run’s data folder only. When you visit another test run, you want the graph to display data from that
other data folder only.

Additionally, suppose you want the graph characteristics to be the same (the same axis labels, annotations,
line styles and colors, etc.). You could:

® Create a graph for the first test run

Kill the window, and save the graph window macro.

Edit the recreation macro to reference data in another data folder.

Run the edited recreation macro.

The recreated graph will have the same appearance, but use the data from the other data folder. The editing
usually involves changing a command like:

SetDataFolder root:Runl:

to:

SetDataFolder root:Run2:

If the graph displays waves from more than one data folder, you may need to edit commands like:
Display rawData, ::Runl:rawData

as well.

However, there is another way that doesn’t require you to edit recreation macros: use the ReplaceWave

operation to replace waves (traces) in the graph with waves from the other folder.

* Switch to the other data folder.

® Select the desired graph

* Type in the command line:

ReplaceWave allinCDF

This replaces all the waves in the graph with identically named waves from the Current Data Folder, if they
exist. There is no dialog for this command; see the ReplaceWave operation on page V-505 for more details.
Though we have only one wave, we can try it out:

¢ Set the Current Data Folder to Runl1.

® Select the graph showing data from Run2 only (CSTATIN.ASV).

¢ Type in the command line:

ReplaceWave allinCDF

The graph will be updated to show the rawData wave from Runl.

I1-123

Chapter 1I-8 — Data Folders

You could create a Button control in the graph (see Button on page II1-361) that executes a macro containing
the ReplaceWave allinCDF command. Then you would use the Data Browser to change the Current Data

Folder, and click the button to update the graph with waves from that data folder. You could also execute
the same macro directly from the Data Browser in response to the user dragging the current folder indica-
tor. To do so, use the command:

ModifyBrowser command3="ReplaceWave allinCDF"

For another Data Folder example, see the Data Folder Tutorial in “Igor Pro Folder:Learning Aids:Tutorials”.

Problems with Data Folders

If you are a nonprogrammer and do not use procedures written by others then you can probably use data
folders without problems. Just be aware that you need to set the current data folder (using the Data
Browser) to the data folder of interest and Igor will behave as if the other data folders do not exist.

If you are a programmer and have written your own procedures, you can use data folders after you have
made your procedures data-folder aware. However, rewriting legacy code to be data folder aware can be a
big job and you should make sure the benefits will outweigh the costs before undertaking such a project.

Nonprogrammers who use procedures written by others should avoid data folders until the procedures are
updated.

Igor procedures written for versions of Igor prior to Igor Pro 3.1 may not work properly if the current data
folder is not root and yet will not be able to access data in other data folders if the current data folder is set
to root. If you rely on procedures (and even some XOPs and XFUNCs) that are not data-folder aware, you
should do some testing to verify that they work properly before committing to data folder use.

Procedures that rely on global variables and waves are likely to fail when the current data folder is not root.
Unfortunately this is a very common occurrence. The reason for this is that non data-folder-aware proce-
dures refer to waves and variables with simple object names (no data folder paths). Igor will look in the
current data folder for objects that are actually in the root data folder. If the current data folder is not root,
Igor will not find the named objects and will generate an error.

Also with the introduction of data folders, the name of a wave is no longer sufficient to uniquely identify it
because the name does not tell you in which data folder the wave can be found (and waves with the same
name can exist in different data folders). For a discussion of how to deal with this problem, see Wave Ref-
erence Functions on page IV-168.

Note that the window recreation macros generated by Igor itself when you click the close button of a graph
or table window are data-folder aware and will work properly regardless of the current data folder setting.

Data Browser

The Data Browser is an extension that lets you navigate through the different levels of data folders, examine
values of variables, strings and waves, load data objects from other Igor experiments, and save a copy of
data from the current experiment to an experiment file or folder on disk.

To open the browser choose Data Browser from the Data menu.

The user interface of the browser is similar to that of the computer desktop. The basic Igor data objects (vari-
ables, strings, waves and data folders) are represented by unique icons and arranged in the main list based
on their hierarchy in the current experiment. The browser also sports several buttons that provide you with
additional functionality:

I1-124

Chapter 1I-8 — Data Folders

[pata Browser W
Shows the complete path ————— B=ix
to the Current Data Folder. — | ¢ [root:Folderi:
Displey | = Use this pop-up to select
ey root hal P
v Waves the top visible folder.
Set the Current Data Folder by ,’;yﬁﬁames —c T P
dragging the arrow or by JE Stings E?TD1 “Collapsed” data folder
Option-clicking (Macintosh) or T g __—(contents of subfolder1
Alt-clicking (Windows) next to T gg‘f;m / are hidden).
the folder. e & [subFalder
. ———— = mruger ———— “Expanded” data folder

Double-click waves to create e [wave2 (contents of folder2 are
tables showing their values. _ tep | B mysirng h

" peee | shown).
Information about selected object.

Wave: wavel
Select the Info box to show. Type: FP32 Size: 832 bytes

Rows:128 Units:None Start: 0 Delta: 1

Note: None
Simple plot of selected wave.
Select the Plot box to show.

The main list occupies most of the browser when it is first invoked. At the top of the data tree is the root
data folder which by default appears expanded. By double-clicking a data folder icon you can change the
display so that the tree is displayed with your selection as the top data folder instead of root. You can use
the pop-up menu above the main list to replace the current top data folder with another folder in the hier-
archy. Following the top folder are all the data objects that it contains. Objects are grouped by type and by
default they are listed in the order that they were created.

Current Data Folder

The “current data folder” is the folder that Igor uses by default for storing newly-created variables, strings,
waves and other data folders. There are two indicators for the current data folder. First, above the main list
there is a text box that contains the full path to the current data folder. Second, the main list has a painted
red arrow to the left of the icon for the current data folder.

When the current data folder is contained inside a collapsed data folder, an unpainted (empty) arrow indi-
cator points to the icon of the data folder containing the current data folder.

g root g root
-------- wave|] wravE]
= After collapsing folder1, =
& folder the arrow is hollow, ~—— E:> EE feq falderd
Cumentdatafolderis 1 o] weawe indicating that the current &[5 folder2
urrent data folder is) ta folder i h
subfolder 1. The = [ryeariable data folder 1s somewhere - waved
arrow is filled with — mp -] Subfolder B mystring
B folder2
........ i weaved
........ H mystring

To set the current data folder, drag the current-folder indicator (red arrow) until it points to the desired data
folder. You can also set the current data folder directly by clicking next to the desired data folder while
pressing Option (Macintosh) or Alt (Windows).

I1-125

Chapter 1I-8 — Data Folders

This “skeleton” arrow indicates you can’t + Badroot

set the current data folder here (it is E— % E wavel

pointing at a wave, not a data folder). B = [folder1
alder

@ waved

Display Checkboxes

The Display checkboxes group lets you determine which object types are shown in the main list. Data
folders are always shown.

Info Checkbox

Click in the Info Checkbox to display the Information pane of the Data Browser. The Information pane is
situated below the main list. When you select a data object in the main list, its properties or contents appear
in the information pane. For example, when you select a variable, its name is displayed in bold face and its
value is displayed below the name. You can edit the numerical value by selecting it and typing in a new
numerical value. If you modify the value of the variable, Accept and Cancel buttons will appear above the
Information pane. You must either accept the change or cancel it before doing anything else with Igor.

When you select a string in the main list, the contents of the string (up to 32000 characters) will be displayed
in the Information pane. Longer strings will be clipped. You can then select and edit any part of the string.

If you select a wave in the main list, the Information pane displays the wave type, size, dimensions, units,
start, delta and note. Each one of these fields is displayed as a bold face name followed by plane text value.
You can select and modify each one of the plane text fields by typing the new values. The only exception
here is the wave type field, where you need to Control-click (Macintosh) or right-click (Windows) to select a
new wave type from a pop-up menu. Note that when you change the wave type or any one of its dimen-
sions, you might irreversibly change your data.

Another option offered by the Information pane is to display WaveStats for any selected wave. The
WaveStats operation on page V-706 provides several statistical properties of a wave. To show WaveStats,
click the sigma icon next to the Info checkbox. Note that WaveStats calculations are performed in the back-
ground and should not affect your interaction with or the performance of Igor. When you click the sigma
icon, it changes to an i icon which you can click to return to normal mode.

Plot Checkbox

Click the Plot Checkbox to display the Plot pane of the Data Browser. The plot pane is situated below the
main list and the optional Information pane. It displays a small graph or image of a wave selected in the
main list above it.

Simple 1D real waves are drawn in red on a white background. Complex 1D waves are drawn as two traces
with the real part drawn in red and the imaginary in blue. 2D waves are drawn as an image that by default
is scaled to the size of the Plot pane and uses the Rainbow color table. To display the image using the aspect
ratio implied by the number of samples in each direction or to change the color table, Control-click in the
Plot pane (Macintosh) or right-click (Windows) and make the appropriate choice in the pop-up menu.

When you select 3D or 4D wave in the main list, the Plot pane displays animated images of one slice at a
time. The slices represent layers relative to the data cube (3D) or the selected chunk (4D). You can stop the
animation at any time by selecting from a pop-up menu in the Plot pane. You can also select the Plot pane
by clicking in it and then toggling the animation by pressing Enter. When the animation is stopped you can
use the cursor keys to navigate through layers and chunks.

New Folder Button

The New Folder button is used to create a new data folder inside the current data folder. The browser pro-
vides a simple dialog for specifying the name of the new data folder and tests that the name provided is
valid. When entering liberal object names, you should not use single quotes around the name.

II-126

Chapter 1I-8 — Data Folders

Browse Expt. Button

The Browse Expt. button loads data objects from Igor packed or unpacked experiments into the current exper-
iment (in memory). When you click Browse Expt., the browser presents the standard Open dialog. You can
choose to browse a packed Igor experiment file or to browse a folder on your hard disk and any subfolders.

To browse a disk folder, select the folder and click the Folder button.

When you browse a disk folder, the browser shows you all packed Igor experiment files or unpacked Igor
data files in the selected folder as well as in any subfolders.

To browse a packed experiment file, select the file in the dialog and click the Choose button.

At this stage, the browser will display, on the right-hand side, a new list containing icons representing the
data in the file or folder that you selected for browsing.

File name of experiment being browsed
(also the root data folder of that experiment).

\ Name of disk
[Data Browser \ g@ folder being
Current Data Folder:
#lroot:Folderl: Done Browsing Done Browsing
Dkt root -
[Waves | J
[v Variahles =..[3 root =--[53 50%50 Gaussian
= = i —
[¥ Stings [wiavel [V_Flag MV@E’;"DQQE":mE .
[~ Info C Folder1 B 5_waveMames = kol Gaussian
[~ Plot £ wavet [5_fileName B8 V_Flag
New Fold [wave2D B waved B 5_waveNames
ew Falder... B & 5 wava1 & s_fileMame
= [53 subFolder [wave2 [wavel
Untitled [waved [wavel
g = Folder2 &[4 Folder! [wawe
Help B4 wave2 [waved
| [myString | | % [Folden
g # [TestRun 1]
Preferences... %[TestRun 2 -

Data folders, waves, numeric variables,
and string variables in the browsed

Contents of experiments in
the browsed disk folder.

Data folders, waves, numeric variables,
and string variables in the current

Browsing an Experiment Browsing a Disk Folder

Each experiment in the new list is represented by a data folder which may contain any number of data
folders and data objects.

Note: Although data folders exist wholly in memory while an experiment is active, unpacked experiments
create a disk folder hierarchy that mirrors the data folder hierarchy. Packed experiments do not create
a disk folder hierarchy at all. The Data Browser displays a saved experiment’s data folders by

examining either the packed experiment’s file contents or the unpacked experiment’s disk hierarchy.

You may select one or more data objects and drag them to the main list. When the cursor appears on top of
avalid drop target (a data folder in the current experiment), the target is highlighted. When you release the
mouse button on a valid drop target, the browser loads the corresponding data objects into the specified
data folder. There is no change to the experiment from which the data is loaded.

I1-127

Chapter 1I-8 — Data Folders

[Data Browser

Current Data Folder:
L3 |root :Folderl:

=/OES
Done Browsing

Display
[Waves
[¥ Variahles
[+ Stings
[Info
[Plat

Mew Folder...
[Semtom.
[Eromez Bt

Help

|mul j

[wwawe @

il |+ -

Folder1
] weaved
[] wave2D
[&trd
=...[53 subFolder
Untitled
= Folderz
o] weave2

=[5 50x50 Gaussian

[V_Flag

A 5_waveMames

A S5_fileName

[wave0

] wavel

] wave2

[wave3
{3 Foldert

—— 1. Click the wave to be copied.

[E myString

2. Drag it to a data folder in

Preferences...

Copying a wave from a browsed experiment into the current experiment

the current experiment.

Clicking in the Done Browsin’ button removes the additional list and resets the browser window to its size
prior to the load operation.

Save Copy Button

The Save Copy button copies data objects from the current experiment to an Igor packed experiment file or
to an unpacked folder on disk. Most users will not need to do this because the data will be saved when the
current experiment is saved.

Before clicking Save Copy, select the data that you want to save. When you click Save Copy the browser
presents a dialog in which you specify the name and location of the packed Igor experiment file which will
contain a copy of the saved data.

If you press Option (Macintosh) or Alt (Windows) while clicking Save Copy, the browser presents a dialog
in which you specify a folder on disk in which the data is to be saved in unpacked format. The unpacked
format is intended for advanced users with specialized applications.

By default, objects are written to the output without regard to the state of the Waves, Variables and Strings
checkboxes in the Display section of the Data Browser. However, there is a preference that you use change
this behavior. If you enable the appropriate checkbox in the Data Browser preferences dialog, then Save
Copy writes a particular type of object only if the corresponding Display checkbox is selected.

The Data Browser does not provide a method for adding or deleting data to or from a packed experiment
file on disk. It can only overwrite an existing file. To add or delete, you need to open the experiment (Open
Experiment in the File menu), make additions and deletions and then save the experiment. Advanced users
can add data to an unpacked folder using the SaveData operation on page V-517.

Delete Button

The Delete button is enabled whenever data objects are selected in the main list. The browser provides a
warning message listing the number of items that will be deleted. Note that clicking this button when the
root folder is selected deletes all data objects in the current experiment.

Note that if you try to delete a wave that’s displayed in a graph or table, it will not be deleted and you will
not get an error message.

To skip the warnings, press Option (Macintosh) or Alt (Windows) when clicking the Delete button.

Warning: If you mistakenly delete something, you cannot undo it except by reverting the entire experiment
to its last saved state.

The Preferences Button
The Preferences button sets the following:

* The font and font size used in the browser’s directory window.

I1-128

Chapter 1I-8 — Data Folders

¢ Whether the browser will remember its window size and position when you relaunch Igor.

* The order of objects in data folders. You can choose to sort them by creation date, by name or by name
and type. If you choose Creation date, objects are ordered according to the time they were created, but
they are grouped according to type with waves appearing first followed by variables and strings. If you
choose to order objects by name only, objects are arranged in alphabetical order within each data folder.
Data folders always appear based on the tree structure and the order in which they were created.

¢ Whether the Save Copy button affects only the currently visible objects.

The Execute Cmd Button

The Execute Cmd button provides you with a shortcut for executing a command on selected objects in the
Data Browser window. When you click in the button you get a dialog where you can specify the command,
the execution mode and a secondary command for an overflow. If you set the commands once, you can skip
the dialog by pressing Option when you click in the button.

The format of commands is exactly the same as any Igor commands except that you use %s where the selec-
tion is to be inserted, e.g.,

Display %s
Print "%s"

When “Execute once for all selected items” is chosen, the Data Browser enters the full path for each selection
in place of %s. This may cause the command to exceed the maximum of 400 characters. Before that limit is
reached, the Data Browser executes the first command on the selection followed by executing the overflow
command on the remaining objects in the selection. For example, if you want to display many waves use
“Display %s” for your first command and “AppendToGraph %s” as the overflow command. The
command syntax should not include printf, sprintf or sscanf because of conflict between the formatting
string and the %s used here.

Using the Data Browser Find Dialog

If you choose the Find item in the Edit menu, the Data Browser displays a Find dialog. This dialog finds
waves, variables and data folders that might be buried in subdata folders. It also provides a convenient way
to select a number of objects at one time, based on a search string. Any object with a name containing your
search string will be found and selected. You can then use the Execute Cmd button to operate on the selection.

060 Find

Find: |

Search for __| Case Sensitive

™ Waves] Whole Word

[=] Variables 1 Wrap Around
[=] Strings
[=] Data Folders

To find and select every item @ Find Single Item
whose name contains the
search string, click this button.

() Select All Matching Items

™ Current folder only

(" Cancel) (Find)
A

The Data Browser’s Find dialog specifies the objects that you would like to find or select. You may use the
“*” wildcard to specify object names of the form “abc*ef” where * represents zero or more arbitrary charac-
ters. Note that “abc*”, “*abc” and “abc” are completely equivalent.

Choosing Find Same in the Edit menu or pressing Command-G (Macintosh) or Ctrl+G (Windows) performs
a search in the forward direction for an item matching the same search string as was used in the previous
Find. When the search reaches the end of the data objects list, it will wrap around only if the wrap around
box is selected in the find dialog.

I1-129

Chapter 1I-8 — Data Folders

Choosing Find Selection in the Edit menu or pressing Command-H (Macintosh) or Ctrl+H (Windows)
searches for an item matching the first item that is currently selected in the main list. All other search set-
tings are those specified in the Find dialog.

Programming the Browser

The Data Browser can be controlled from the command line or from Igor procedures. Detailed reference
information about the CreateBrowser, ModifyBrowser, and GetBrowserSelection commands can be found
in the Command Help tab of the Igor Help Browser.

Advanced Igor programmers can use the browser as an input device via the GetBrowserSelection function
or by modifying stored command strings. For an example, see the Data Folder Tutorial in “Igor Pro
Folder:Learning Aids:Tutorials”.

You can use the Data Browser as a modal dialog permitting a user to select one or more waves from multi-
ple data folders. For details, see the Data Browser help file.

Browser Pop-Up Menu

You can apply various Igor operations to objects by selecting the
objects in the Data Browser and choosing the operation froma | (9 oot
pop-up menu you obtain by Control-clicking (Macintosh) or B blobs
right-clicking (Windows). =
] George
Using the Display and New Image pop-up items, you can create
a new graph or image plot of the selected wave. You can also Edit
select multiple waves, in the same or different data folders, to m
display together in the same graph. Gizmo Plot

AppendImageT
Copy Full Path

Delete Objeck(s)
e T

The Copy Full Path item copies the complete data folder paths
of the selected objects to the clipboard.

Other Browser Operations

You can rename data objects by clicking the name of the object and editing the name.

The browser also supports icon dragging as means of moving or copying data objects from one data folder to
another. You can select multiple data objects by Shift-clicking (Macintosh) or Ctrl-clicking (Windows) on them.

You can move data objects from one data folder to another by dragging them.

You can copy data objects from one data folder to another by holding down Option (Macintosh) or Alt (Win-
dows) while dragging.

You can duplicate data objects within a folder by choosing Duplicate from the Edit menu or by pressing
Command-D (Macintosh) or Ctrl+D (Windows).

Note: Objects remain selected even when they are hidden inside collapsed data folders. If you select a

wave, collapse its data folder, Shift-select another wave, and drag it to another data folder, both
waves will be moved there.

However, when a selected object is hidden by deselecting the relevant Display checkbox, no

action (e.g., delete or duplicate) is taken upon it except if you use Save Copy and your preference
setting is to save nonvisible objects.

I1-130

Chapter 1I-8 — Data Folders

Data Browser Shortcuts

Action

Shortcut

To set the current data folder
To display a graph or an image of a
wave

To view the contents of a
“collapsed” data folder

To “collapse” a data folder

To move the selection up or down by

one object

To move an object from one data
folder to another

To move several objects from one
data folder to another

To copy an object from one data
folder to another

To duplicate an object

To rename an object

To view a wave’s values in a table

To print the value of a variable or
string in the history area

To delete an object without the
confirmation dialog

To find objects in the browser list

To find the same thing again

To find names containing selected
text

To execute a command on a set of
waves

To execute a command on a set of
waves without going through the
Execute Cmd dialog

To see WaveStats for a selected wave

To change colormap, activate
animation in plot pane

Drag the red arrow until it points to the desired data folder, or Option-
click (Macintosh) or Alt-click (Windows) next to the desired data folder.

Control-click (Macintosh) or right-click (Windows) and select an
option from the pop-up menu.

Click the triangle (Macintosh) or the plus button (Windows) next to
the data folder.

Click the triangle (Macintosh) or the minus button (Windows) next to
the data folder.

Press Up Arrow or Down Arrow.
Drag the object onto the destination data folder.

Select the objects by Shift-clicking them (Macintosh) or Ctrl-clicking
them (Windows). Drag the selected objects onto the desired data folder.

Drag the object while holding down Option (Macintosh) or Alt
(Windows).

Select the object and press Command-D (Macintosh) or Ctrl+D
(Windows).

Click the object’s name and type a new name. To finish, press Return,
Enter, Tab, or click outside the name.

Double-click the wave’s icon.

Double-click the variable or string icon.

Press Option (Macintosh) or Alt (Windows) while clicking the Delete
button.

Choose Find from the Edit menu, or press Command-F (Macintosh)
or Ctrl+F (Windows).

Choose Find Same from the Edit menu, or press Command-G
(Macintosh) or Ctrl+G (Windows).

Choose Find Selection from the Edit menu, or press Command-H
(Macintosh) or Ctrl+H (Windows).

Select the icon for each wave that the command is to act on and click
the Execute Cmd button.

Select the icon for each wave that the command is to act on, press
Option (Macintosh) or Alt (Windows), and click the Execute Cmd
button. This reexecutes the command entered previously in the
Execute Cmd dialog.

Control-click (Macintosh) or right-click (Windows) in the information
pane and select the WaveStats mode from the pop-up menu.

Control-click (Macintosh) or right-click (Windows) in the plot pane
and select the appropriate option from the pop-up menu.

I1-131

Chapter 1I-8 — Data Folders

Action Shortcut

To stop the animation in the plot pane Click in the plot pane and then press Return or Enter.

To navigate between displayed Stop the animation in the plot pane and use the cursor keys, Page
layers or chunks Down, Page Up, Home, and End.
To close the information pane Double click the horizontal separator bar.

To save a copy of selected datain ~ Press Option (Macintosh) or Alt (Windows) while clicking the Save
unpacked format Copy button.

I1-132

Chapter

Importing and Exporting Data

L0AdINg WaVES.......cuiiiiiiciei ittt 135
Load Waves SUDIENUc.coiriiiiiieicce et 136
NUMDET FOIMALScuviiicitit st e 137
The End of the LINe ...t 137

Loading Delimited Text Filesccooviiiiiiiiice s 137
DN (<A 50 4 Tl Sl0) u 0 F= 1 1< PR SROSRRORROOY 138

Custom Date FOImMAtsccovoiiiiiiiiiii e 138
COolUMIN LADELS ..ottt 140
Examples of Delimited TeXt.......ooiiiiiiiie s 140
The Load Waves Dialog for Delimited Text — 1Dccccooiiiiiiiiiiiicceece s 141
Editing Wave NAMES........c.c.ooiii et 142
Set Scaling After Loading Delimited Text Dataccooeuoiiiiiiiiiiic 143
The Load Waves Dialog for Delimited Text — 2Dc.cccoooiiiiiiiiiiccc 143
2D Label and Position Details.........cccoeueiiirieieiiciici s 143
Loading Text Waves from Delimited Text Files..........cccoooiiiiii 144
Delimited Text TWeAKSc.c.cvieiiiiiicieieecte ettt 145
Troubleshooting Delimited Text Filesc.coiiiiiiiii s 146

Loading Fixed Field Text Files ...t 146
The Load Waves Dialog for Fixed Field Textcccooiriiiiiiiii 147

Loading General Text FIles..........ooriiiiii e 147
Examples of General TeXt ..ot 148
Comparison of General Text, Fixed Field and Delimited Textc.cccoooeeiiiniiiiiiiicie 148
The Load Waves Dialog for General Text — 1Dccooriiiiiiiiiiiiiic s 149
Editing Wave Names for @ BlOCK............c.oiriiiii s 149
The Load Waves Dialog for General Text — 2Dccooouiiiiiiiiiiiii 150
Set Scaling After Loading General Text Datacc.cooeieiiiiiciiiiiicc 150
General Text TWeaKSco.cuoiiii s 150
Troubleshooting General Text Files ... 151

Loading IgOr Text FIles ... 152
Examples Of IGOT T@Xt ...ovuuiiieiii s 152
Igor Text File FOImMat ...t 153
Setting Scaling in an Igor Text File ... 154
The Load Waves Dialog for Igor Text..........cccoiiiiiiii s 154
Loading MultiDimensional Waves from Igor Text Filescccooooiiiiiiiii, 155
Loading Text Waves from Igor Text Files ... 155
The Igor Text File Type Code and File EXt@NSIONcocueiiiiicieiiiiiiciec 156

Loading UTTF-16 Filescouiiiiei st 156

Loading Igor Binary Datac.oiiii s 156
The Igor Binary File ...t 157
The Load Waves Dialog for Igor Binary ... 157
The LoadData Operation ...ttt 158
Sharing Versus Copying Igor Binary Files..........ccooiiii 159

Loading Image Files ..o s 159

Chapter 1I-9 — Importing and Exporting Data

The Load Image DIalog.........cccovriiiiiiiiiiic e 159
Image Loading Detailscccoviiiiiriiiiiiiiiiiii e 160
Loading Other Flesccoiiiiiiiiiiiiiiii e 161
Loading Non-TEXT Files as TEXT FIlescccccovvniniiiiiiiiiccccccce e 162
MACINEOSI FILES ...uvievieeiitecieetecteete ettt ettt ettt eaeeteeveeasenseeaseseereensesssenseeseensenes 162
WINAOWS FILES ..ottt ettt ettt et et e et e e te e eaeeeaeeeateeeteeesesenseeenseenseeeneeenneenseas 162
Loading Row-Oriented Text Data ..o 162
Loading HDF Data........ccccoviiiiiiiiiiiiiiiiii s 163
Loading Very Big Binary Files ... 163
Loading Waves Using Igor Procedures ... 163
Variables Set by the LoadWave Operation. ... 164
Loading and Graphing Waveform Datac.cocovviniiiiniiiiiiiiiiiccccces 164
Loading and Graphing XY Data.........ccoccvviiiiiiiiiiiccccscse s 166
Loading All of the Files in @ FOIdeTcccovuviiiiiiiiiiiiiiiiicccne 168
SAVING WAVES.....oouiiiiiiiiccc s 169
Saving Waves in a Delimited Text File ..., 170
Saving Waves in a General Text File..........ccccoviiiiiiinee 171
Saving Waves in an Igor Text File ... 171
Saving Waves in Igor Binary Files...........ccccoviiiiiiiiiiiiccns 171
Saving Waves in Image Files.........cccccoviiiiiii s 171
Saving SOUN FleS.........ccoviiiiiiiiiiiiiiii e 172
EXPOIting TeXt WaAVEScccoiiiiiiiiiiiiiciccttcn st 172
Exporting MultiDimensional Waves..............cciiiiiiiiiie s 172
Accessing SQL Databasescouveciiiiiiiice s 172

I1-134

Chapter 1I-9 — Importing and Exporting Data

Loading Waves

Most Igor users create waves by loading data from a file created by another program. The process of loading
a file creates new waves and then stores data from the file in them. Optionally, you can overwrite existing
waves instead of creating new ones. The waves can be numeric or text and of dimension 1 through 4.

Igor provides a number of different routines for loading data files. There is no single file format for numeric
or text data that all programs can read and write.

There are two broad classes of files used for data interchange: text files and binary files. Text files are usually used
to exchange data between programs. Although they are called text files, they may contain numeric data, text data
or both. In any case, the data is encoded as plain text that you can read in a text editor. Binary files usually contain
data that is efficiently encoded in a way that is unique to a single program and can not be viewed in a text editor.

The closest thing to a universally accepted format for data interchange is the “delimited text” format. This
consists of rows and columns of numeric or text data with the rows separated by carriage return characters
(Macintosh), linefeed return characters (Unix), or carriage return/linefeed (Windows) and the columns sepa-
rated by tabs or commas. The tab or comma is called the “delimiter character”. Igor can read delimited text
files written by most programs.

FORTRAN programs usually create fixed field text files in which a fixed number of characters is used for
each column of data with spaces as padding between columns. The Load Fixed Field Text routine is
designed to read these files.

Text files are convenient because you can create, inspect or edit them with any text editor. In Igor, you can
use a notebook window for this purpose. If you have data in a text file that has an unusual format, you may
need to manually edit it before Igor can load it.

Text files generated by scientific instruments or custom programs often have “header” information, usually
at the start of the file. The header is not part of the block of data but contains information associated with
it. Igor’s text loading routines are designed to load the block of data, not the header. The Load General Text
routine can usually automatically skip the header. The Load Delimited Text and Load Fixed Field Text rou-
tines needs to be told where the block of data starts if it is not at the start of the file.

An advanced user could write an Igor procedure to read and parse information in the header using the
Open, FReadLine, StrSearch, sscanf and Close operations as well as Igor’s string manipulation capabilities.
Igor includes an example experiment named Load File Demo which illustrates this.

If you will be working on a Macintosh, and loading data from files on a PC, or vice-versa, you should look
at File System Issues on page II1-394.

The following table lists the six types of built-in data loading routines in Igor and their salient features.

File Type Description

Delimited text ~ Created by spreadsheets, database programs, data acquisition programs, text editors,
custom programs. This is the most commonly used format for exchanging data between
programs.

Row Format: <data><delimiter><data><CR>

Contains one block of data with any number of rows and columns. A row of column
labels is optional.

Can load numerig, text, date, time, and date/time columns.
Can load columns into 1D waves or blocks into 2D waves.

Columns may be equal or unequal in length.

I1-135

Chapter 1I-9 — Importing and Exporting Data

File Type

Description

Fixed field text

General text

Image

Igor Text

Igor Binary

Created by FORTRAN programs.
Row Format: <data><padding><data><padding><CR>
Contains one block of data with any number of rows and columns.

Each column consists of a fixed number of characters including any space characters
which are used for padding.

Can load numeric, text, date, time and date/time columns.
Can load columns into 1D waves or blocks into 2D waves.
Columns are usually equal in length but do not have to be.

Created by spreadsheets, database programs, data acquisition programs, text editors,
custom programs.

Row Format: <number><white space><number><CR>

Contains one or more blocks of numbers with any number of rows and columns. A row
of column labels is optional.

Can not handle columns containing nonnumeric text, dates and times.
Can load columns into 1D waves or blocks into 2D waves.
Columns must be equal in length.

Igor’s Load General Text routine has the ability to automatically skip nonnumeric
header text.

Created by a wide variety of programs.
Format: Always binary. Varies according to file type.

Can load GIF, JPEG, PNG, PICT, TIFF, BMP, PhotoShop, Silicon Graphics, Sun raster,
and Targa graphics files.

Can load data into matrix waves, including TIFF image stacks.

Created by Igor, custom programs. Used mostly as a means to feed data and commands
from custom programs into Igor.

Format: See Igor Text File Format on page 11-153.

Can load numeric and text data.

Can load data into waves of dimension 1 through 4.

Contains one or more wave blocks with any number of waves and rows.
Consists of special Igor keywords, numbers and Igor commands.
Created by Igor, custom programs. Used by Igor to store wave data.
Each file contains data for one Igor wave of dimension 1 through 4.

Format: See Igor Technical Note #003, “Igor Binary Format”.

In addition, extensions to Igor are available to load data from other types of files, including Excel, Matlab,
HDF, HDEF5, JCAMP, DEM, DLG, Nicolet, various sound formats and general binary files. See Loading
Other Files on page 11-161 for details.

Load Waves Submenu

You access all of these routines via the Load Waves submenu of the Data menu.

II-136

Chapter 1I-9 — Importing and Exporting Data

Opens the Load Waves dialog. This presents

Browse Waves...
»

L LT L e ™ 2 all options for most of the built-in file loaders.
Save Waves M Load lgor Binary...
Make Waves... Load Igor Text... . .
Duplicate Waves... Load General Text... Sklp_the Load Waves dla_IOQ gnd
Load Delimited Text... go directly to the Open File dialog.

Change Wave Scaling...
Redimension Waves...
Insert Points...

Load Image... |
Load General Binary File...

Delete Points... ::2:3 gg}"::f_-l-]-” File . -

Kill Waves... - - File loaders added by extensions
Load Nicolet File... t dinthe | Ext . fold

Rename... Load Sound... stored In the Igor Extensions folaer.

Data Browser Load Excel File... —]

The Load Waves item in this submenu leads to the Load Waves dialog. This dialog invokes all of the built-
in loading routines except for the image loader and accesses all available options.

The Load Igor Binary, Load Igor Text, Load General Text, and Load Delimited Text items in the Load Waves
submenu are shortcuts that access the respective file loading routines with default options. We recommend that
you start with the Load Waves item so that you can see what options are available. There are no shortcut items
for loading fixed field text or image data because these formats require that you specify certain parameters.

The Load Image item leads to the Load Image dialog which provides the means to load various kinds of
image files.

The remaining items are provided by Igor File-Loader Extensions. These are plug-in software modules that
can be installed or removed easily as described under Loading Other Files on page 1I-161.

All of the built-in file loaders can load numeric data. The delimited text and fixed field text loaders can also

load string text, date, time and date/time data.

Number Formats

A number has the following form:

Optional leading sign. Optional exponent, introduced by “e” or “E”.

[+/-] <digits> [.<digits>] [e/E[+/-] <exponent>]

Optional decimal point and fractional part.

An example is “-17.394e+3”. Some FORTRAN programs write “d” or “D” instead of “e” or “E” to introduce
the exponent. Igor recognizes this.

The End of the Line

Different computer systems use different characters to mark the end of a line in a text file. The Macintosh
uses the carriage-return character (CR). Unix uses linefeed (LF). Windows uses a carriage-return and line-
feed (CRLF) combination. When loading waves, Igor treats a single CR, a single LF, or a CRLF as the end

of a line. This allows Igor to load text data from file servers on a variety of computers without translation.

Loading Delimited Text Files

A delimited text file consists of rows of values separated by tabs or commas with a carriage return, linefeed or
carriage return/linefeed combination at the end of the row. There may optionally be a row of column labels. Igor
can load each column in the file into a separate 1D wave or it can load all of the columns into a single 2D wave.
There is no limit to the number of rows or columns except that all of the data must fit in available memory.

In addition to numbers and text, the delimited text file may contain dates, times or date/times. The Load
Delimited Text routine attempts to automatically determine which of these formats is appropriate for each
column in the file. You can override this automatic determination if necessary.

I1-137

Chapter 1I-9 — Importing and Exporting Data

A numeric column can contain, in addition to numbers, NaN and [+]INF. NaN means “Not a Number” and is
the way Igor represents a blank or missing value in a numeric column. INF means “infinity”. If Igor finds text in
anumeric or date/time column that it can’t interpret according to the format for that column, it treats it as a NaN.

If Igor encounters, in any column, a delimiter with no data characters preceding it (i.e., two tabs in a row)
it takes this as a missing value and stores a blank in the wave. In a numeric wave, a blank is represented by
a NaN. In a text wave, it is represented by an element with zero characters in it.

Date/Time Formats

The Load Delimited Text routine can handle dates in many formats. A few “standard” formats are sup-
ported and in addition, you can specify a “custom” format (see Custom Date Formats on page II-138).

The standard date formats are:

mm/dd/yy (month/day/year)
mm/yy (month/year)
dd/mm/yy (day/month/year)

To use the dd/mm/yy format instead of mm/dd/yy, you must set a tweak. See Delimited Text Tweaks on
page II-145.

You can also use a dash or a dot as a separator instead of a slash.

Igor can also handle times in the following forms:

[+][-]hh:mm:ss [AM PM] (hours, minutes, seconds)

[+]1[-]hh:mm:ss.ff [AM PM] (hours, minutes, seconds, fractions of seconds)
[+][-]hh:mm [AM PM] (hours, minutes)

[+]1[-]hhhh:mm:ss.ff (hours, minutes, seconds, fractions of seconds)

The first three forms are time-of-day forms. The last one is the elapsed time. In an elapsed time, the hour is
in the range 0 to 9999.

The year can be specified using two digits (99) or four digits (1999). If a two digit year is in the range 00 ...
39, Igor treats this as 2000 ... 2039. If a two digit year is in the range 40 ... 99, Igor treats this as 1940 ... 1999.

The Load Delimited Text routine can also handle date/times which consist of one of these date formats, a
single space or the letter T, and then one of the time formats.

Custom Date Formats

If your data file contains dates in a format other than the “standard” format, you can use Load Delimited
Text to specify exactly what date format to use. You do this using the Delimited Text Tweaks dialog which
you access through the Tweaks button in the Load Waves dialog. Choose Other from the Date Format pop-
up menu. This leads to the Date Format dialog.

I1-138

Chapter 1I-9 — Importing and Exporting Data

Date Format

@ Lse Commaon Format YeartionthDay ﬂ

(" Use Custom Format

Year |2 digit

Maonth: |Numeric, leading zero

Led Led L]

Diay of Manth: ||_eading zero

Samples
760704

040105

Cancel ‘ (0] |

By clicking the Use Common Format radio button, you can choose from a pop-up menu of common for-
mats. After choosing a common format, you can still control minor properties of the format, such as
whether to use 2 or 4 digits years and whether to use leading zeros or not.

In the rare case that your file’s date format does not match one of the common formats, you can use a full
custom format by clicking the Use Custom Format radio button. It is best to first choose the common format
that is closest to your format and then click the Use Custom Format button. Then you can make minor
changes to arrive at your final format.

Date Format

(" Use Common Format

(@ Use Custom Format

Language: | Finnish |
‘ear |2 digit ﬂ

Manth: |Abbreviated alphabetic ﬂ

Day of kanth: |Leading zerm ﬂ

Layout

Year ﬂ l-_ |M0nth ﬂ H_ |Day of Manth ﬂ ’_ |NDne ﬂ

Samples
76-heinl-04
04-tarmmi-05

Cancel

I1-139

Chapter 1I-9 — Importing and Exporting Data

When you use either a common format or a full custom format, the format that you specify must match the
date in your file exactly.

When loading data as delimited text, if you use a date format containing a comma, such as “October 11,
1999”7, you must make sure that LoadWave operation will not treat the comma as a delimiter. You can do
this using the Delimited Text Tweaks dialog.

When loading a date format that consists entirely of digits, such as 991011, you should use the LoadWave/B
flag to specify that the data is a date. Otherwise, LoadWave will treat it as a regular number. The /B flag can
not be generated from the dialog — you need to use the LoadWave operation from the command line.
Another approach is to use the dialog to generate a LoadWave command without the /B flag and then
specify that the column is a date column in the Loading Delimited Text dialog that appears when the
LoadWave operation executes.

Column Labels

Each column may optionally have a column label. When loading 1D waves, if you read wave names and if
the file has column labels, Igor will use the column labels for wave names. Otherwise, Igor will automati-
cally generate wave names of the form wave0, wavel and so on.

Igor considers text in the label line to be a column label if that text can not be interpreted as a data value
(number, date, time, or datetime) or if the text is quoted using single or double quotes.

When loading a 2D wave, Igor optionally uses the column labels to set the wave’s column dimension labels.
The wave name does not come from column labels but is automatically assigned by Igor. You can rename
the wave after loading if you wish.

Igor expects column labels to appear in a row of the form:

<label><delimiter><label><delimiter>..<label><CR> (or CRLF or LF)

where <column label> may be in one of the following forms:

<label> (label with no quotes)
"<label>" (label with double quotes)
'<label>' (label with single quotes)

The default delimiter characters are tab and comma. There is a tweak (see Delimited Text Tweaks on page
1I-145) for using other delimiters.

Igor expects that the row of column labels, if any, will appear at the beginning of the file. There is a tweak
(see Delimited Text Tweaks on page 11-145) that you can use to specify if this is not the case.

Igor will clean up column labels found in the file, if necessary, so that they are legal wave names using stan-
dard name rules. The cleanup consists of converting illegal characters into underscores and truncating long
names to the maximum of 31 characters.

Examples of Delimited Text

Here are some examples of text that you might find in a delimited text file. These examples are tab-delimited.

Simple delimited text

chO chl ch2 ch3 (optional row of labels)
2.97055 1.95692 1.00871 8.10685
3.09921 4.08008 1.00016 7.53136
3.18934 5.91134 1.04205 6.90194

Loading this text would create four waves with three points each or, if you specify loading it as a matrix, a
single 3 row by 4 column wave.

I1-140

Chapter 1I-9 — Importing and Exporting Data

Delimited text with missing values

chO chl ch?2 ch3 (optional row of labels)
2.97055 1.95692 8.10685
3.09921 4.08008 1.00016 7.53136

5.91134 1.04205

Loading this text as 1D waves would create four waves. Normally each wave would contain three points but
there is an option to ignore blanks at the end of a column. With this option, ch0 and ch3 would have two points.
Loading as a matrix would give you a single 3 row by 4 column wave with blanks in columns 0, 2 and 3.

Delimited text with a date column

Date chO chl ch?2 (optional row of labels)
2/22/93 2.97055 1.95692 1.00871
2/24/93 3.09921 4.08008 1.00016
2/25/93 3.18934 5.91134 1.04205

Loading this text as 1D waves would create four waves with three points each. Igor would convert the dates
in the first column into the appropriate number using the Igor system for storing dates (number of seconds
since 1/1/1904). Loading as a matrix would give you a single 3 row by 4 column wave with column 0 con-
taining dates encoded as numbers.

Delimited text with a nonnumeric column

Sample chO chl ch?2 (optional row of labels)
Ge 2.97055 1.95692 1.00871
Si 3.09921 4.08008 1.00016
GaAs 3.18934 5.91134 1.04205

Loading this text as 1D waves would normally create four waves with three points each. The first wave would
be a text wave and the remaining would be numeric. You could also load this as a single 3x3 matrix, treating
the first row as column labels and the first column as row labels for the matrix. If you loaded it as a matrix but
did not treat the first column as labels, it would create a 3 row by 4 column text wave, not a numeric wave.

The Load Waves Dialog for Delimited Text — 1D

Toload a delimited text file as 1D waves, invoke the Load Waves dialog by choosing the Load Waves menu item.

Select to make a table Select if the file has a row of column Choose the type of file to be loaded.
showing the loaded waves. names you want to use for wave names.
Select to create double precision
Load |Waves waves, deselect for single precision.
Path File Type: 'Eimited Text "5

Select the symbolic _none_) Make table ™ Double precision
path that pointsto the {igor_ ¥ Read wave names [Auto name & go —— When deselected, Igor presents
fplder i:ontalnlrlg the [Load from clipboard a subsequent dialog in which
file or “<none>". —— [Overwrite existing waves you can enter wave names.
When deselected, [Load columns into matrix ——— Loads data from the Clipboard
columns in the file instead of from a file.

are loaded into
individual 1D waves.

Path: Macintosh HD:Users:Igor:Data Acq:Unit 1:

("File...) run7

LoadHave /J/0 M /F=Datal k=8 "run7"

Click to select the file —f Do it) (ToCmd Line) (ToClip) (Tweaks...) (Help) (Cancel)
to load.

Leads to a subdialog that presents infrequently used options.

The basic process of loading 1D data from a delimited text file is as follows:

1. Bring up the Load Waves dialog.

I1-141

Chapter 1I-9 — Importing and Exporting Data

2. Choose Delimited Text from the File Type pop-up menu.
3. Click the File button to select the file containing the data.
4. Click Do 1It.

When you click Do It, the LoadWave operation runs. It executes the Load Delimited Text routine which
goes through the following steps:

Optionally, determine if there is a row of column labels.

Determine the number of columns.

Determine the format of each column (number, text, date, time or date/time).
Optionally, present another dialog allowing you to confirm or change wave names.
Create waves.

Load the data into the waves.

A e

Igor looks for a row of labels only if you enable the “Read wave names” option. If you enable this option
and if Igor finds a row of labels then this determines the number of columns that Igor expects in the file.
Otherwise, Igor counts the number of data items in the first row in the file and expects that the rest of the
rows have the same number of columns.

In step 3 above, Igor determines the format of each column by examining the first data item in the column.
Igor will try to interpret all of the remaining items in a given column using the format that it determines
from the first item in the column.

If you choose Load Delimited Text from the Load Waves submenu instead of choosing Load Waves, Igor will
display a dialog from which you can select the delimited text file to load directly. This is a shortcut that skips
the Load Waves dialog and uses default options for the load. This will always load 1D waves, not a matrix.

Before you use this shortcut, take a look at the Load Waves dialog so you can see what options are available.

Editing Wave Names

The “Auto name & go” option is used mostly when you're loading 1D data under control of an Igor proce-
dure and you want everything to be automatic. When loading 1D data manually, you normally leave the
“Auto name & go” option deselected. Then Igor presents an additional dialog in which you can confirm or
change wave names.

Loading Delimited Text

ch chlcha ch3 q
2.97656 1.95892 1.88671 §.168665 b/
3.A9921 4.ABAAE 1.AAA1E 7.53136

Shows a bit of the file — zl1z3¢ 501134 1.pe2e6 6.o0104 L
you're loading. (2_.3?855 1.95692 1.80671 6.16605 . v
Provide Wave Names
Edit wave names here.— cho chl ch2 ch3
™ Double precision Column Number: 0 (" skip Column -—— SKips highlighted column.
| Overwrite existing waves Column Format: | Number []— Controls how Igor will
(5 Make table interpret the column.
Continues the load. ——&iead) (_Help) (quit +— Aborts the load.

The context area gives you feedback on what Igor is about to load. You can’t edit the file here. If you want
to edit the file, abort the load and open the file as an Igor notebook or open it in a word processor.

I1-142

Chapter 1I-9 — Importing and Exporting Data

Set Scaling After Loading Delimited Text Data

If your 1D numeric data is uniformly spaced in the X dimension then you will be able to use the many oper-
ations and functions in Igor designed for waveform data. You will need to set the X scaling for your waves
after you load them, using the Change Wave Scaling dialog.

Note: If your 1D data is uniformly spaced it is very important that you set the X scaling of your waves.
Many Igor operations depend on the X scaling information to give you correct results.

If your 1D data is not uniformly spaced then you will use XY pairs and you do not need to change X scaling.
You may want to use Change Wave Scaling to set the data units.

The Load Waves Dialog for Delimited Text — 2D

To load a delimited text file as a 2D wave, choose the Load Waves menu item. Then, select the “Load
columns into matrix” checkbox.

Load Waves

Path File Type: | Delimited Text [%]
none] Make table @ Double precision
Igor Base name for matrix
Datal .
! Load from clipboard Base: wave — Generate the wave name
] Overwrite existing waves based on this.

Select to load all columns
into a single 2D wave.

@ Load columns into matrix

Select to set the wave’s # Read row labels # Read column labels Select to treat a row/column as
dimension labels from the first # Read row positions # Read column positions - A row/column

X . = = - — containing position information
row/column labels in the file. Set row scaling Iy] Set column scaling Iy]

rather than as data.

Position information can be used to set the wave’s dimension
scaling or it can be loaded as a separate 1D wave.

When you load a matrix (2D wave) from a text file, Igor creates a single wave. Therefore, there is no need
for a second dialog to enter wave names. Instead, Igor automatically names the wave based on the base
name that you specify. After loading, you can then rename the wave if you want.

To understand the row/column label/position controls, you need to understand Igor’s view of a 2D delim-
ited text file:

Optional row positions Optional
. Col 0 Col 1 Col 2 Col 3 — columnlabels
Optional row
labels 6.0 6.5 7.0 7.5 —— Optional
column
Row 0O 0.0 12.4 24.5 98.2 12.4 positions
Row 1 0.1 43.7 84.3 43.6 75.3
Row 2 0.2 83.8 33.9 43.8 50.1 — Wave data

In the simplest case, your file has just the wave data — no labels or positions. You would indicate this by
deselecting all four label/position checkboxes.

2D Label and Position Details

If your file does have labels or positions, you would indicate this by selecting the appropriate checkbox.
Igor expects that row labels appear in the first column of the file and that column labels appear in the first
line of the file unless you instruct it differently using the Tweaks subdialog (see Delimited Text Tweaks on
page 11-145). Igor loads row/column labels into the wave’s dimension labels (described in Chapter 1I-6, Mul-
tidimensional Waves).

I1-143

Chapter 1I-9 — Importing and Exporting Data

Igor can treat column positions in one of two ways. It can use them to set the dimension scaling of the wave
(appropriate if the positions are uniformly-spaced) or it can create separate 1D waves for the positions. Igor
expects row positions to appear in the column immediately after the row labels or in the first column of the
file if the file contains no row labels. It expects column positions to appear immediately after the column
labels or in the first line of the file if the file contains no column labels unless you instruct it differently using
the Tweaks subdialog.

A row position wave is a 1D wave that contains the numbers in the row position column of the file. Igor
names a row position wave “RP_" followed by the name of the matrix wave being loaded. A column posi-
tion wave is a 1D wave that contains the numbers in the column position line of the file. Igor names a
column position wave “CP_" followed by the name of the matrix wave being loaded. Once loaded (into sep-
arate 1D waves or into the matrix wave’s dimension scaling), you can use row and column position infor-
mation when displaying a matrix as an image or when displaying a contour of a matrix.

If your file contains header information before the data, column labels and column positions, you need to
use the Tweaks subdialog to specify where to find the data of interest. The “Line containing column labels”
tweak specifies the line on which to find column labels. The “First line containing data” tweak specifies the
first line of data to be stored in the wave itself. The first line in the file is considered to be line zero.

If you instruct LoadWave to read column positions, it determines which line contains them in one of two
ways, depending on whether or not you also instructed it to read column labels. If you do ask LoadWave
to read column labels, then LoadWave assumes that the column positions line immediately follows the
column labels line. If you do not ask LoadWave to read column labels, then LoadWave assumes that the
column positions line immediately precedes the first data line.

Loading Text Waves from Delimited Text Files

With regard to text columns, the Load Delimited Text operation can work in one of three ways: auto-iden-
tify column type, treat all columns as numeric, treat all columns as text. You can specify which method you
want to use using the Tweaks subdialog of the Load Delimited Text dialog.

In the “auto-identify column type” method, Igor attempts to determine whether a column is numeric or text
by examining the file. This is the default method when you choose Data—Load Waves—Load Delimited
Text. Igor looks for the first nonblank value in each column and determines if the value is numeric or not.
If it is numeric, Igor loads the column into a numeric wave which could be plain numeric, date, time or
date/time as appropriate. If it is not numeric, Igor loads the column into a text wave.

In the “treat all columns as numeric” method, Igor loads all columns into numeric waves. This is the default
method when you use the LoadWave/J] operation from the command line or from an Igor procedure. We
made LoadWave/] behave this way by default for backward-compatibility reasons. In ensures that Igor pro-
cedures will work the same in Igor Pro 3.0 and later as they did before. To use the “auto-identify column
type” method, you need to use LoadWave/]/K=0.

In the “treat all columns as text” method, Igor loads all columns into text waves. This method may have use
in rare cases in which you want to do text-processing on a file by loading it into a text wave and then using
Igor’s string manipulation capabilities to massage it.

There are a few issues relating to special characters that you may need to deal with when loading data into
text waves.

By default, the Load Delimited Text operation considers comma and tab characters to be delimiters which
separate one column from the next. If the text that you are loading may contain commas or tabs as values
rather than as delimiters, you will need to change the delimiter characters. You can do this using the Tweaks
subdialog of the Load Delimited Text dialog.

The Load Delimited Text operation always considers carriage return and linefeed characters to mark the end
of a line of text. It would be quite unusual to find a data file that uses these characters as values. In the
extremely rare case that you need to load a carriage return or linefeed as a value, you can use an escape
sequence. Replace the carriage return value with “\r” (without the quotes) and the linefeed value with “\n”.
Igor will convert these to carriage return and linefeed and store the appropriate character in the text wave.

I1-144

Chapter 1I-9 — Importing and Exporting Data

In addition to “\r” and “\n”, Igor will also convert “\t” into a tab value and do other escape sequence con-
versions (see Escape Characters in Strings on page IV-13). These conversions create a possible problem
which should be quite rare. You may want to load text that contains “\1r”, “\n” or “\t” sequences which
you do not want to be treated as escape sequences. To prevent Igor from converting them into carriage
return and tab, you will need to replace them with “\\r”, “\\n” and “\ \t”.

Igor does not remove quotation marks when loading data from delimited text files into text waves. If nec-
essary, you can do this by opening the file as a notebook and doing a mass replace before loading or by dis-
playing the loaded waves in a table and using Edit—Replace.

Delimited Text Tweaks

There are many variations on the basic form of a delimited text file. We’ve tried to provide tweaks that allow
you to guide Igor when you need to load a file that uses one of the more common variations. To do this, use
the Tweaks button in the Load Waves dialog. Most people will not need to use the tweaks.

Automatically deduce column formats or treat all columns as numeric or as text.

Load Data Tweaks

Determines what characters
to use to delimit one number Column Types: | Auto-identify column type ' []

from the next. Delimiter characters: E tab E comma || space —— Select “comma” as the decimal
) — < character if you have a file with
Decimal character: period I !
.) : European-style numbers.
Choose dd/mm/yy if your file ———— Date Format: [mm/dd/yy 7]

has days before months.
Line containing column labels: |0

First line containing data: 0

Number of lines containing data: Auto Use these to specify where to find
the data in the file as well as to
load a subset of the data.

First column containing data: 0

Number of columns containing data: Auto

Select if you have columns ————— [Jignore blanks at the end of a column
of unequal length. # Report loaded waves in history
Revert to Defaults (Help Y (cancel) (Return)

The Tweaks dialog can specify the space character as a delimiter. Use the LoadWave operation to specify
other delimiters as well.

The main reason for allowing space as a delimiter is so that we can load files that use spaces to align col-
umns. This is a common format for files generated by FORTRAN programs. Normally, you should use the
fixed field text loader to load these files, not the delimited text loader. If you do use the delimited text loader
and if space is allowed as a delimiter then Igor treats any number of consecutive spaces as a single delimiter.
This means that two consecutive spaces do not indicate a missing value as two consecutive tabs would.

When loading a delimited file, Igor normally expects the first line in the file to contain either column labels
or the first row of data. There are several tweaks that you can use for a file that doesn’t fit this expectation.

Lines and columns in the tweaks dialog are numbered starting from zero.

Using the “Line containing column labels” tweak, you can specify on what line column labels are to be
found if not on line zero. Using this and the “First line containing data” tweak, you can instruct Igor to skip
garbage, if any, at the beginning of the file.

The “First line containing data”, “Number of lines containing data”, “First column containing data”, and
“Number of columns containing data” tweaks are designed to allow you to load any block of data from any-
where within a file. This might come in handy if you have a file with hundreds of columns but you are only
interested in a few of them.

I1-145

Chapter 1I-9 — Importing and Exporting Data

If “Number of lines containing data” is set to “auto” or 0, Igor will load all lines until it hits the end of the
file. If “Number of columns containing data” is set to “auto” or 0, Igor will load all columns until it hits the
last column in the file.

The proper setting for the “Ignore blanks at the end of a column” tweak depends on the kind of 1D data stored
in the file. If a file contains some number of similar columns, for example four channels of data from a digital
oscilloscope, you probably want all of the columns in the file to be loaded into waves of the same length. Thus,
if a particular column has one or more missing values at the end, the corresponding points in the wave should
contain NaNs to represent the missing value. On the other hand, if the file contains a number of dissimilar
columns, then you might want to ignore any blank points at the end of a column so that the resulting waves
will not necessarily be of equal length. If you enable the “Ignore blanks at the end of a column” tweak then
LoadWave will not load blanks at the end of a column into the 1D wave. If this option is enabled and a par-
ticular column has nothing but blanks then the corresponding wave is not loaded at all.

Troubleshooting Delimited Text Files

You can examine the waves created by the Load Delimited Text routine using a table. If you don’t get the
results that you expected, you will need to try other LoadWave options or inspect and edit the text file until
it is in a form that Igor can handle. Remember the following points:

* Igorexpects the file to consist of numeric values, text values, dates, times or date/times separated by
tabs or commas unless you set tweaks to the contrary.

¢ Igor expects a row of column labels, if any, to appear in the first line of the file unless you set tweaks
to the contrary. It expects that the column labels are also delimited by tabs or commas unless you
set tweaks to the contrary. Igor will not look for a line of column labels unless you enable the Read
Wave Names option for 1D waves or the Read Column Labels options for 2D waves.

* Igor determines the number of columns in the file by inspecting the column label row or the first
row of data if there is no column label row.

If merely inspecting the file does not identify the problem then you should try the following troubleshoot-
ing technique.

* Copy just the first few lines of the file into a test file.
¢ Load the test file and inspect the resulting waves in a table.
* Open the test file as a notebook.

e Edit the file to eliminate any irregularities, save it and load it again. Note that you can load a file as
delimited text even if it is open as a notebook. Make sure that you have saved changes to the note-
book before loading it.

¢ Inspect the loaded waves again.

This process usually sheds some light on what aspect of the file is irregular. Working on a small subset of
your file makes it easier to quickly do some trial and error investigation.

If you are unable to get to the bottom of the problem, email a small segment of the file to support@wavemet-
rics.com along with a description of the problem. Do not send the segment as plain text because email programs
may strip out or replace unusual control characters in the file. Instead, send a compressed version of the file.

Loading Fixed Field Text Files

A fixed field text file consists of rows of values, organized into columns, that are a fixed number of charac-
ters wide with a carriage return, linefeed, or carriage return/linefeed combination at the end of the row.
Space characters are used as padding to ensure that each column has the appropriate number of characters.
In some cases, a value will fill the entire column and there will be no spaces after it. FORTRAN programs
typically generate fixed field text files.

Igor’s Load Fixed Field Text routine works just like the Load Delimited Text routine except that, instead of
looking for a delimiter character to determine where a column ends, it counts the number of characters in
the column. All of the features described in the section Loading Delimited Text Files on page II-137 apply
also to loading fixed field text.

I1-146

mailto:support@wavemetrics.com
mailto:support@wavemetrics.com

Chapter 1I-9 — Importing and Exporting Data

The Load Waves Dialog for Fixed Field Text
To load a fixed field text file, invoke the Load Waves dialog by choosing the Load Waves menu item.

Load Waves
Path File Type: ' Fixed Field Text | %]
none @ Make table @ Double precision
Igor — =
Weather Read wawve names __lAuto name & go

| Load from clipboard

__| Overwrite existing waves

Number of Columns: | 10 " 1All 9's Means Blank
Field Widths: 8,23,4,2,5,6,6,4,2,&

[Load columns into matrix

Path: Macintosh HD:Users:lgor:Weather:

| File... | fsod_ascii.03084

LoadHave /F={18@, 6, 8} /D /F=lleather /E=1 /K=0 /B="H=8; =23 ; W=4 ; W=2; H=5; W=6; =0 =4 ; lI=2; l1=6; "

(“Bﬂ'“) 'iTG Cmd LinE:Jl '\ To Clip ,,' 'iTWEak_c....rj '\ Help x' J— ,,'

The dialog is the same as for loading delimited text except for three additional items.

In the Number of Columns item, you must enter the total number of columns in the file. In the Field Widths
item, you must enter the number of characters in each column of the file, separated by commas. The last
value that you enter is used for any subsequent columns in the file. If all columns in the file have the same
number of characters, just enter one number.

If you select the All 9’s Means Blank checkbox then Igor will treat any column that consists entirely of the digit
9 as a blank. If the column is being loaded into a numeric wave, Igor sets the corresponding wave value to NaN.
If the column is being loaded into a text wave, Igor sets the corresponding wave value to " (empty string).

Loading General Text Files

We use the term “general text” to describe a text file that consists of one or more blocks of numeric data. A
block is a set of rows and columns of numbers. Numbers in a row are separated by one or more tabs or
spaces. One or more consecutive commas are also treated as white space. A row is terminated by a carriage
return character, a linefeed character, or a carriage return/linefeed combination.

The Load General Text routine handles numeric data only, not date, time, date/time or text. Use Load Delimited
Text or Load Fixed Field Text for these formats. Load General Text can handle 2D numeric data as well as 1D.

The first block of data may be preceded by header information which the Load General Text routine will
automatically skip.

If there is a second block, it is usually separated from the first with one or more blank lines. There may also
be header information preceding the second block which Igor will also skip.

I1-147

Chapter 1I-9 — Importing and Exporting Data

When loading 1D data, the Load General Text routine loads each column of each block into a separate wave.
It treats column labels as described above for the Load Delimited Text routine, except that spaces as well as
tabs and commas are accepted as delimiters. When loading 2D data, it loads all columns into a single 2D wave.

The Load General Text routine determines where a block starts and ends by counting the number of
numbers in a row. When it finds two rows with the same number of numbers, it considers this the start of
a block. The block continues until a row which has a different number of numbers.

Examples of General Text

Here are some examples of text that you might find in a general text file.

Simple general text

choO chl ch2 ch3 (optional row of labels)
2.97055 1.95692 1.00871 8.10685
3.09921 4.08008 1.00016 7.53136
3.18934 5.91134 1.04205 6.90194

The Load General Text routine would create four waves with three points each or, if you specify loading as
a matrix, a single 3 row by 4 column wave.
General text with header

Date: 3/2/93
Sample: P21-3A

choO chl ch2 ch3 (optional row of labels)
2.97055 1.95692 1.00871 8.10685
3.09921 4.08008 1.00016 7.53136
3.18934 5.91134 1.04205 6.90194

The Load General Text routine would automatically skip the header lines (Date: and Sample:) and would create
four waves with three points each or, if you specify loading as a matrix, a single 3 row by 4 column wave.
General text with header and multiple blocks

Date: 3/2/93
Sample: P21-3A

chO 1 chl 1 ch2 1 ch3 1 (optional row of labels)
2.97055 1.95692 1.00871 8.10685
3.09921 4.08008 1.00016 7.53136
3.18934 5.91134 1.04205 6.90194

Date: 3/2/93
Sample: P98-2C

ch0 2 chl 2 ch2 2 ch3 2 (optional row of labels)
2.97055 1.95692 1.00871 8.10685
3.09921 4.08008 1.00016 7.53136
3.18934 5.91134 1.04205 6.90194

The Load General Text routine would automatically skip the header lines and would create eight waves
with three points each or, if you specify loading as a matrix, two 3 row by 4 column waves.

Comparison of General Text, Fixed Field and Delimited Text

You may wonder whether you should use the Load General Text routine, Load Fixed Field routine or the
Load Delimited Text routine. Most commercial programs create simple tab-delimited files which these rou-
tines can handle. Files created by scientific instruments, mainframe programs, custom programs, or
exported from spreadsheets are more diverse. You may need to try these routines to see which works better.
To help you decide which to try first, here is a comparison.

Advantages of the Load General Text compared to Load Fixed Field and to Load Delimited Text:

® It can automatically skip header text.

I1-148

Chapter 1I-9 — Importing and Exporting Data

¢ It can load multiple blocks from a single file.
* It can tolerate multiple tabs or spaces between columns.

Disadvantages of the Load General Text compared to Load Fixed Field and to Load Delimited Text:
¢ It can not handle blanks (missing values).

¢ It can not tolerate columns of nonnumeric text or nonnumeric values in a numeric column.

e [t can not load text values, dates, times or date/times.

¢ [t can not handle comma as the decimal point (European number style).

The Load General Text routine can load missing values if they are represented in the file explicitly as “NaN”
(Not-a-Number). It can not handle files that represent missing values as blanks because this confounds the
technique for determining where a block of numbers starts and ends.

The Load Waves Dialog for General Text — 1D

To load a general text file as 1D waves, invoke the Load Waves dialog by choosing the Load Waves menu
item. The dialog appears as shown above for delimited text.

The basic process of loading data from a general text file is as follows:

1. Bring up the Load Waves dialog.

2. Choose General Text from the File Type pop-up menu.
3. Click the File button to select the file containing the data.
4. Click Do 1It.

When you click Do It, Igor’s LoadWave operation runs. It executes the Load General Text routine which
goes through the following steps:

1. Locate the start of the block of data using the technique of counting numbers in successive lines.
This step also skips the header, if any, and determines the number of columns in the block.
Optionally, determine if there is a row of column labels immediately before the block of numbers.
Optionally, present another dialog allowing you to confirm or change wave names.

Create waves.

Load data into the waves until the end of the file or a until a row that contains a different number
of numbers.

6. If not at the end of the file, go back to step one to look for another block of data.

Ol N

Igor looks for a row of column labels only if you enable the “Read wave names” option. It looks in the line
immediately preceding the block of data. If it finds labels and if the number of labels matches the number
of columns in the block, it uses these labels as wave names. Otherwise, Igor will automatically generate
wave names of the form wave0, wavel and so on.

If you choose the Load General Text item from the Load Waves submenu instead of the Load Waves item, Igor
will display a dialog from which you can select the general text file to load directly. This is a shortcut that skips
the Load Waves dialog and uses default options for the load. This will always load 1D waves, not a matrix.
Before you use this shortcut, take a look at the Load Waves dialog so you can see what options are available.

Editing Wave Names for a Block

In step 3 above, the Load General Text routine presents a dialog in which you can change wave names. This
works exactly as described above for the Load Delimited Text routine except that it has one extra button:
“Skip this block”.

I1-149

Chapter 1I-9 — Importing and Exporting Data

Loading Ceneral Text

. chl chicha ch3 f
Shows a bit of the block 2.97055 1.95692 1.08G7L 5.10665 0
: 3.99921 4.98968 1.89@16 7.53136 .
being loaded. 3.18934 5.91134 1.04205 6.90104 .
2.97655 1.95692 1.B@ETL &.1AAGS v
C T r
Provide Wave Names
Edit wave names here. cho chl ch2 <h3
@ Double precision Column Number: 0 (Skip Column E SkIpS hlgh“ghted column.
| Overwrite existing waves Column Format: | Number =
| Make table
| Load) (Skip this block) (Help) (| Quit)
Loads current block. Skips current block. Aborts the load.

Use “Skip this block” to skip one or more blocks of a multiple block general text file.

Click the Skip Column button to skip loading of the column corresponding to the selected name box. Shift-
click the button to skip all columns except the selected one.

The Load Waves Dialog for General Text — 2D

Igor can load a 2D wave using the Load General Text routine. However, Load General Text does not
support the loading of row/column labels and positions. If the file has such rows and columns, you must
load it as a delimited text file.

The main reason to use the Load General Text routine rather than the Load Delimited Text routine for
loading a matrix is that the Load General Text routine can automatically skip nonnumeric header informa-
tion. Also, Load General Text treats any number of spaces and tabs, as well as one comma, as a single delim-
iter and thus is tolerant of less rigid formatting.

Set Scaling After Loading General Text Data

If your 1D data is uniformly spaced in the X dimension then you will be able to use the many operations
and functions in Igor designed for waveform data. You will need to set the X scaling for your waves after
you load them, using the Change Wave Scaling dialog.

Note: If your data is uniformly spaced it is very important that you set the X scaling of your waves. Many
Igor operations depend on the X scaling information to give you correct results.

If your 1D data is not uniformly spaced then you will use XY pairs and you do not need to change X scaling.
You may want to use Change Wave Scaling to set the waves’ data units.

General Text Tweaks

The Load General Text routines provides some tweaks that allow you to guide Igor as it loads the file. To
do this, use the Tweaks button in the Load Waves dialog. Most people will not need to use these tweaks.

I1-150

Chapter 1I-9 — Importing and Exporting Data

Load Data Tweaks

Line containing column labels: Auto
First line containing data: Auto

Number of lines containing data: Auto Use these to specify where to
find the data in the file as well
as to load a subset of the data.

First column containing data: 0

Number of columns containing data: Auto

Load General Textcan — _!lgnore blanks at the end of a column
not handle blanks. E Report loaded waves in history
(" Revert to Defaults) (Help) (Cancel) (Return)

The items at the top of the dialog are hidden because they apply to the Load Delimited Text routine only.
Load General Text always skips any tabs and spaces between numbers and will also skip a single comma.
The “decimal point” character is always period and it can not handle dates.

The items relating to column labels, data lines and data columns have two potential uses. You can use them
to load just a part of a file or to guide Igor if the automatic method of finding a block of data produces incor-
rect results.

Lines and columns in the tweaks dialog are numbered starting from zero.

Igor interprets the “Line containing column labels” and “First line containing data” tweaks differently for
general text files than it does for delimited text files. For delimited text, zero means “the first line”. For
general text, zero for these parameters means “auto”.

Here is what “auto” means for general text. If “First line containing data” is auto, Igor starts the search for data
from the beginning of the file without skipping any lines. If it is not “auto”, then Igor skips to the specified
line and starts its search for data there. This way you can skip a block of data at the beginning of the file. If
“Line containing column labels” is auto then Igor looks for column labels in the line immediately preceding
the line found by the search for data. If it is not auto then Igor looks for column labels in the specified line.

If the “Number of lines containing data” is not “auto” then Igor will stop loading after the specified number
of lines or when it hits the end of the first block, whichever comes first. This behavior is necessary so that it
is possible to pick out a single block or subset of a block from a file containing more than one block.

If a general text file contains more than one block of data and if “Number of lines containing data” is “auto”
then, for blocks after the first one, Igor maintains the relationship between the line containing column labels
and first line containing data. Thus, if the column labels in the first block were one line before the first line
containing data then Igor will expect the same to be true of subsequent blocks.

You can use the “First column containing data” and “Number of columns containing data” tweaks to load
a subset of the columns in a block. If “Number of columns containing data” is set to “auto” or 0, Igor will
load all columns until it hits the last column in the block.

Troubleshooting General Text Files

You can examine the waves created by the Load General Text routine using a table. If you don’t get the
results that you expected, you will need to inspect and edit the text file until it is in a form that Igor can
handle. Remember the following points:

* Load General Text can not handle dates, times, date/times, commas used as decimal points, or
blocks of data with nonnumeric columns. Try Load Delimited Text for this.

e It skips any tabs or spaces between numbers and will also skip a single comma.

I1-151

Chapter 1I-9 — Importing and Exporting Data

e Jtexpects aline of column labels, if any, to appear in the first line before the numeric data unless you
set tweaks to the contrary. It expects that the labels are also delimited by tabs, commas or spaces. It
will not look for labels unless you enable the Read Wave Names option.

¢ It works by counting the number of numbers in consecutive lines. Some unusual formats (e.g.,
1,234.56 instead of 1234.56) can throw this count off, causing it to start a new block prematurely.

e It can not handle blanks or nonnumeric values in a column. Each of these will start a new block of data.

e Ifitdetects a change in the number of columns, it starts loading a new block into a new set of waves.

If merely inspecting the file does not identify the problem then you should try the technique of loading a
subset of your data. This is described under Troubleshooting Delimited Text Files on page II-146 and often
sheds light on the problem. In the same section, you will find instructions for sending the problem file to
WaveMetrics for analysis, if necessary.

Loading Igor Text Files

An Igor Text file consists of keywords, data and Igor commands. The data can be numeric, text or both and
can be of dimension 1 to 4. Many Igor users have found this to be an easy and powerful way to import data
from their own custom programs into Igor.

The file name extension for an Igor Text file is “.itx”. Old versions of Igor used “.awav” and this is still accepted.

Examples of Igor Text

Here are some examples of text that you might find in an Igor Text file.

Simple Igor Text

IGOR
WAVES/D unitl, unit2
BEGIN
19.7 23.9
19.8 23.7
20.1 22.9
END
X SetScale x 0,1, "V", unitl; SetScale d 0,0, "A", unitl
X SetScale x 0,1, "V", unit2; SetScale d 0,0, "A", unit2

Loading this would create two double-precision waves named unitl and unit2 and set their X scaling, X
units and data units.

Igor Text with extra commands

IGOR
WAVES/D/O xdata, ydata
BEGIN
98.822 486.528
109.968 541.144
119.573 588.21
133.178 654.874
142.906 702.539
END
X SetScale d4d 0,0, "V", xdata
X SetScale 4 0,0, "A", ydata
X Display ydata vs xdata; DoWindow/C TempGraph
X ModifyGraph mode=2, 1lsize=5
X CurveFit line ydata /X=xdata /D
X Textbox/A=LT/X=0/Y=0 "ydata= \\{W_coef[0] }+\\{W _coef[1l]}*xdata"
X PrintGraphs TempGraph
X DoWindow/K TempGraph // kill the graph
X KillWaves xdata, ydata, fit ydata // kill the waves

I1-152

Chapter 1I-9 — Importing and Exporting Data

Loading this would create two double-precision waves and set their data units. It would then make a graph,
do a curve fit, annotate the graph and print the graph. The last two lines do housekeeping.

Igor Text File Format

An Igor Text file starts with the keyword IGOR. The rest of the file may contain blocks of data to be loaded
into waves or Igor commands to be executed and it must end with a blank line.

A block of data in an Igor Text file must be preceded by a declaration of the waves to be loaded. This declaration
consists of the keyword WAVES followed by optional flags and the names of the waves to be loaded. Next the
keyword BEGIN indicates the start of the block of data. The keyword END marks the end of the block of data.

A file can contain any number of blocks of data, each preceded by a declaration. If the waves are 1D, the
block can contain any number of waves but waves in a given block must all be of the same data type. Mul-
tidimensional waves must appear one wave per block.

A line of data in a block consists of one or more numeric or text items with tabs separating the numbers and
a carriage return at the end of the line. Each line should have the same number of items.

You can’t use blanks, dates, times or date/times in an Igor Text file. To represent a missing value in a
numeric column, use “NaN" (not-a-number). To represent dates or times, use the standard Igor date format
(number of seconds since 1/1/1904).

There is no limit to the number of waves or number of points except that all of the data must fit in available
memory.

The WAVES keyword accepts the following optional flags:

Flag Effect

/N=(...) Specifies size of each dimension for multidimensional waves.
/O Overwrites existing waves.

/R Makes waves real (default).

/C Makes waves complex.

/S Makes waves single precision floating point (default).
/D Makes waves double precision floating point.

/I Makes waves 32 bit integer.

/W Makes waves 16 bit integer.

/B Makes waves 8 bit integer.

/U Makes integer waves unsigned.

/T Specifies text data type.

Normally you should make single or double precision floating point waves. Integer waves are normally used
only to contain raw data acquired via external operations. They are also appropriate for storing image data.

The /N flag is needed only if the data is multidimensional but the flag is allowed for one-dimensional data,
too. Regardless of the dimensionality, the dimension size list must always be inside parentheses. Examples:

WAVES/N=(5) wavelD

WAVES/N=(3,3) wave2D

WAVES/N=(3,3,3) wave3D

Integer waves are signed unless you use the /U flag to make them unsigned.

If you use the /C flag then a pair of numbers in a line supplies the real and imaginary value for a single point
in the resulting wave.

I1-153

Chapter 1I-9 — Importing and Exporting Data

If you specify a wave name that is already in use and you don’t use the overwrite option, Igor will display
a dialog so that you can resolve the conflict.

The /T flag makes text rather than numeric waves. See Loading Text Waves from Igor Text Files on page
I1-155.

A command in an Igor Text file is introduced by the keyword X followed by a space. The command follows
the X on the same line. When Igor encounters this while loading an Igor Text file it executes the command.

Anything that you can execute from Igor’s command line is acceptable after the X. Introduce comments
with “X //”. There is no way to do conditional branching or looping. However, you can call an Igor proce-
dure defined in a built-in or auxiliary procedure window.

Setting Scaling in an Igor Text File
When Igor writes an Igor Text file, it always includes commands to set each wave’s scaling, units and
dimension labels. It also sets each wave’s note.

If you write a program that generates Igor Text files, you should set at least the scaling and units. If your
1D data is uniformly spaced in the X dimension, you should use the SetScale operation to set your waves X
scaling, X units and data units. If your data is not uniformly spaced, you should set the data units only. For
multidimensional waves, use SetScale to set Y, Z and T units if needed.

The Load Waves Dialog for Igor Text

To load an Igor Text file, invoke the Load Waves dialog by choosing the Load Waves menu item.

Select to make a table showing the loaded waves. Select the type of file to be loaded.
‘ Load Waves
Select the symbolic path that Path _‘_F”e Type: [lgorText ' [3)
points to the folder containing oor = Vil
the file or “<none>". Datal _ Load from clipboard ands dat? from the
[_| Overwrite existing waves Cllpboard instead of

When selected, existing
waves with the same name
as waves being loaded will
be overwritten. You can
also force an overwrite by
using WAVES/O in the file.

| from a file.

Path: Macintosh HD:Users:Igor:Data Acq:Unit 1:
Click to select the file to load. —File...) run7

Loaduave /T F=Datal “run?"

(Do It) (ToCmd Line) (To Clip] (Help) (Cancel)

The basic process of loading data from an Igor Text file is as follows:

1. Bring up the Load Waves dialog.

2. Choose Igor Text from the File Type pop-up menu.

3. Click the File button to select the file containing the data.
4. Click Do It.

When you click Do It, Igor’s LoadWave operation runs. It executes the Load Igor Text routine which loads
the file.

If you choose the Load Igor Text item from the Load Waves submenu instead of the Load Waves item, Igor
will display a dialog from which you can select the Igor Text file to load directly. This is a shortcut that skips
the Load Waves dialog.

I1-154

Chapter 1I-9 — Importing and Exporting Data

Loading MultiDimensional Waves from Igor Text Files

In an Igor Text file, a block of wave data is preceded by a WAVES declaration. For multidimensional data,
you must use a separate block for each wave. Here is an example of an Igor Text file that defines a 2D wave:

IGOR
WAVES/D/N=(3,2) wavel
BEGIN
1 2
3 4
5 6
END

The “/N=(3,2)” flag specifies that the wave has three rows and two columns. The first line of data (1 and 2)
contains data for the first row of the wave. This layout of data is recommended for clarity but is not
required. You could create the same wave with:

IGOR
WAVES/D/N=(3,2) wavel
BEGIN
1 2 3 4 5 6
END

Igor merely reads successive values and stores them in the wave, storing a value in each column of the first
row before moving to the second row. All white space (spaces, tabs, return and linefeed characters) are
treated the same.

When loading a 3D wave, Igor expects the data to be in column/row/layer order. You can leave a blank line
between layers for readability but this is not required.

Here is an example of a 3 rows by 2 columns by 2 layers wave:

IGOR
WAVES/D/N=(3,2,2) wavel
BEGIN
1 2
3 4
5 6
11 12
13 14
15 16
END

The first 6 numbers define the values of the first layer of the 3D wave. The second 6 numbers define the
values of the second layer.

When loading a 4D wave, Igor expects the data to be in column/row/layer/chunk order. You can leave a
blank line between layers and two blank lines between chunks for readability but this is not required.

If loading a multidimensional wave, Igor expects that the dimension sizes specified by the /N flag are accu-
rate. If there is more data in the file than expected, Igor ignores the extra data. If there is less data than
expected, some of the values in the resulting waves will be undefined. In either of these cases, Igor will print
a message in the history area to alert you to the discrepancy.

Loading Text Waves from Igor Text Files

Loading text waves from Igor Text files is similar to loading them from delimited text files except that in an
Igor Text file you declare a wave’s name and type. Also, text strings are quoted in Igor Text files as they are
in Igor's command line. Here is an example of Igor Text that defines a text wave:

IGOR

WAVES/T textWave(O, textWavel

BEGIN
"This" "Hello"

I1-155

Chapter 1I-9 — Importing and Exporting Data

"is" "outll
"a test" "there"
END

All of the waves in a block of an Igor Text file must have the same number of points and data type. Thus, you
can not mix numeric and text waves in the same block. You can have any number of blocks in one Igor Text file.

As this example illustrates, you must use double quotes around each string in a block of text data. If you
want to embed a quote, tab, carriage return or linefeed within a single text value, use the escape sequences
\",\t, \ror \n. Use \ \ to embed a backslash. For less common escape sequences, see Escape Characters in
Strings on page IV-13.

The Igor Text File Type Code and File Extension

On Macintosh, Igor recognizes files of type IGTX as Igor Text. The file type can also be TEXT. If you are
writing a program that generates Igor text files, use file type IGTX, creator code IGRO (last character is zero)

”

and the file name extension “.itx”.

7

On Windows, just use the file name extension “.itx

Loading UTF-16 Files

The LoadWave operation can load data from UTF-16 (two-byte Unicode) text files. It does not recognize
non-ASCII characters, but does ignore the byte-order mark at the start of the file (BOM) and null bytes con-
tained in UTF-16 text files. Consequently it can load data from UTF-16 files containing just numeric data
and ASCII text.

Loading Igor Binary Data

This section discusses loading Igor Binary data into memory. Igor stores Igor Binary data in two ways: one
wave per Igor Binary file in unpacked experiments and multiple waves within a packed experiment file.

When you open an experiment, Igor automatically loads the Igor Binary data to recreate the experiment’s
waves. The main reason to explicitly load an Igor Binary file is if you want to load data from another
program that knows how to create an Igor Binary file. The easiest way to load data from another experiment
is to use the Data Browser (see Data Browser on page 11-124).

Warning: You can get into trouble if two Igor experiments load data from the same Igor Binary file. See
Sharing Versus Copying Igor Binary Files on page II-159 for details.

There are a number of ways to load Igor Binary data into the current experiment in memory. Here is a sum-
mary. For most users, the first and second methods — which are simple and easy to use — are sufficient.

Method Loads Action Purpose

Open Packed and Restores experiment to the statein ~ To restore experiment.
Experiment unpacked files which it was last saved.

(Chapter 1I-3)

Data Browser ~ Packed and Copies data from one experiment to To collect data from different

(Chapter I1-8) unpacked files another. sources for comparison.

Browse Waves Unpacked files Copies data from one experimentto To collect data from different
Dialog only another or shares between sources for comparison.

(Chapter II-5) experiments.

Desktop Drag ~ Unpacked files Copies data from one experiment To collect data from different
and Drop only to another or shares between sources for comparison.

(Chapter II-3) experiments.

II-156

Chapter 1I-9 — Importing and Exporting Data

Method Loads Action Purpose
Load Waves Unpacked files Copies data from one experiment To create a LoadWave command
Dialog only to another or shares between that can be used in an Igor
experiments. procedure.
LoadWaves Unpacked files Copies data from one experiment To automatically load data using
Operation only to another or shares between an Igor Procedure.
experiments.
LoadData Packed and Copies data from one experiment to To automatically load data using
Operation unpacked files another. an Igor Procedure.

The Igor Binary File

The Igor Binary file format is Igor’s native format for storing waves. This format stores one wave per file very
efficiently. The file includes the numeric contents of the wave (or text contents if it is a text wave) as well as all
of the auxiliary information such as the dimension scaling, dimension and data units and the wave note. In an
Igor packed experiment file, any number of Igor Binary wave files can be packed into a single file.

The file name extension for an Igor Binary file is “.ibw”. Old versions of Igor used “.bwav” and this is still
accepted. The Macintosh file type code is IGBW and the creator code is IGRO (last character is zero).

The name of the wave is stored inside the Igor Binary file. It does not come from the name of the file. For
example, wave(Q might be stored in a file called “wave0.ibw”. You could change the name of the file to any-
thing you want. This does not change the name of the wave stored in the file.

The Igor Binary file format was designed to save waves that are part of an Igor experiment. In the case of
an unpacked experiment, the Igor Binary files for the waves are stored in the experiment folder and can be
loaded using the LoadWave operation. In the case of a packed experiment, data in Igor Binary format is
packed into the experiment file and can be loaded using the LoadData operation.

Some Igor users have written custom programs that write Igor Binary files which they load into an experi-
ment. Igor Technical Note #003, “Igor Binary Format”, provides the details that a programmer needs to do
this. See also Igor Pro Technical Note PTN003.

The Load Waves Dialog for Igor Binary

To load an Igor Binary file, invoke the Load Waves dialog by choosing the Load Waves menu item.

Select to make a table showing the loaded wave. Select the type of file to be loaded.
Loadanes Select to make a copy of the
Select the symbolic path that Path File Type: | Igor Binary = wave in the current experlme.nt.
; . _none_ # Make table Deselect to share the wave file
points to the folder containing igor with another experiment
the file or “<none>". —— | Datal ® Copy to home P)
[Overwrite existing waves When selected, an existing wave

with the same name as the wave
being loaded will be overwritten.

Path: Macintosh HD:Users:Igor:Data Acq:Unit 1:
Click to select the file to load.— File...) yData_CS.ibw

LoadWave H/P=Datal /E=1 "uData_CS.ibw"

Dot) (ToCmdlLine) ((ToClip) (Help) (Cancel)

The basic process of loading data from an Igor Binary file is as follows:

1. Bring up the Load Waves dialog.

I1-157

Chapter 1I-9 — Importing and Exporting Data

Choose Igor Binary from the File Type pop-up menu.
Click the File button to select the file containing the data.
Set the “Copy to home” checkbox.

Click Do It.

Ol N

When you click Do It, Igor’s LoadWave operation runs. It executes the Load Igor Binary routine which
loads the file. If the wave that you are loading has the same name as an existing wave or other Igor object,
Igor will present a dialog in which you can resolve the conflict.

Notice the “Copy to home” checkbox. It is very important.

If it is selected, Igor will disassociate the wave from its source file after loading it into the current experi-
ment. When you next save the experiment, Igor will store a new copy of the wave with the current experi-
ment. The experiment will not reference the original source file. We call this “copying” the wave to the
current experiment.

If “Copy to home” is not selected, Igor will keep the connection between the wave and the file from which
it was loaded. When you save the experiment, it will contain a reference to the source file. We call this “shar-
ing” the wave between experiments.

We strongly recommend that you copy waves rather than share them. See Sharing Versus Copying Igor
Binary Files on page II-159 for details.

If you choose the Load Igor Binary item from the Load Waves submenu instead of the Load Waves item,
Igor will display a dialog from which you can select the Igor Binary file to load directly. This is a shortcut
that skips the Load Waves dialog. When you take this shortcut, you lose the opportunity to set the “Copy
to home” checkbox. Thus, during the load operation, Igor will present a dialog from which you can choose
to copy or share the wave.

Click to copy the wave. This Copy or Share Wave?

is the recommended setting. \

® Copy this wave to the current experiment.

C Share this wave with existing experiment.

Click to share the wave bet_fveen / Sharing the wave means that YOU must keep track of
two experiments. See Sharing the Igor binary file.

Versus Copying Igor Binary

Files on page II-159 for details. For instance, if you transfer this experiment to a
floppy, you must transfer the Igor binary file too.

@ € Help b (Cancel)

The LoadData Operation

The LoadData operation provides a way for Igor programmers to automatically load data from packed Igor
experiment files or from a file-system folder containing unpacked Igor Binary files. It can load not only waves
but also numeric and string variables and a hierarchy of data folders that contains waves and variables.

The Data Browser’s Browse Expt button provides interactive access to the LoadData operation and permits
you to drag a hierarchy of data from one Igor experiment into the current experiment in memory. To
achieve the same functionality in an Igor procedure, you need to use the LoadData operation directly. See
the LoadData operation (see page V-331).

LoadData, accessed from the command line or via the Data Browser, has the ability to overwrite existing
waves, variables and data folders. Igor automatically updates any graphs and tables displaying the over-
written waves. This provides a very powerful and easy way to view sets of identically structured data, as
would be produced by successive runs of an experiment. You start by loading the first set and create graphs
and tables to display it. Then, you load successive sets of identically named waves. They overwrite the pre-
ceding set and all graphs and tables are automatically updated.

I1-158

Chapter 1I-9 — Importing and Exporting Data

Sharing Versus Copying Igor Binary Files

There are two reasons for loading a binary file that was created as part of another Igor experiment: you may
want your current experiment to share data with the other experiment or, you may want to copy data to the
current experiment from the other experiment.

There is a potentially serious problem that occurs if two experiments share a file. The file can not be in

two places at one time. Thus, it will be stored with the experiment that created it but separate from the other.
The problem is that, if you move or rename files or folders, the second experiment will be unable to find the
binary file.

Here is an example of how this problem can bite you.

Imagine that you create an experiment at work and save it as an unpacked experiment file on your hard
disk. Let’s call this “experiment A”. The waves for experiment A are stored in individual Igor Binary files
in the experiment folder.

Now you create a new experiment. Let’s call this “experiment B”. You use the Load Igor Binary routine to
load a wave from experiment A into experiment B. You elect to share the wave. You save experiment B on
your hard disk. Experiment B now contains a reference to a file in experiment A’s home folder.

i % i % Experiment B contains a
- = reference to a file stored
la e in Experiment A.

Experiment A.uxp Experiment B.uxp
The shared wave is
stored in an Igor Binary . .

file in this folder.

| &) | &)

Experiment A Folder Experiment B Folder

Now you decide to take experiment B to another computer. You copy it to a CD and go to the other com-
puter. When you try to open experiment B, Igor can’t find the file it needs to load the shared wave. This file
is back on the hard disk of the original computer.

A similar problem occurs if, instead of moving experiment B to another computer, you change the name or
location of experiment A’s folder. Experiment B will still be looking for the shared file under its old name
or in its old location and Igor will not be able to load the file when you open experiment B.

Because of this problem, we recommend that you avoid file sharing as much as possible. If it is necessary to
share a binary file, you will need to be very careful to avoid the situation described above.

The Data Browser always copies when transferring data from disk into memory.

For more information on the problem of sharing files, see References to Files and Folders on page II-36.

Loading Image Files

You can load PICT, TIFF, JPEG, PNG, GIF, Photoshop, SGI, Sun Raster, BMP, and Targa image files into Igor
Pro using the Load Image dialog. The same file types are supported both on the Macintosh and on Windows.

Loading the following types requires that you have Apple’s QuickTime software installed on your com-
puter: PICT (on Windows only), JPEG, GIF, PhotoShop, SGI and Targa. All Mac OS X machines have Quick-
Time installed. Windows users who want to load these types of files can download QuickTime from
<http://www.apple.com/quicktime/>.

The Load Image Dialog

To load an image file into an Igor matrix wave, invoke the Load Image dialog by choosing the Load Image
menu item in the Load Waves submenu.

I1-159

http://www.apple.com/quicktime/

Chapter 1I-9 — Importing and Exporting Data

Load Image

Path File Type: | PNG 4
none
home @ Display Image
Igor | Overwrite Existing Waves
@ Print Results In History
| Load Multiple Images From File
¥ Use File Name For Wave
:, Use the name: image
Path:
(" File...)Macintosh HD:Users:lgor:NewBrain.png

ImageLoad /T=prgG "Macintosh HO:Users:gor iMewBrain.png"

{ Do It } l\ ToCmd Line) (To Clip _,,' Help " Cancel

A \. _/ \—/

This dialog looks and works much the same as the other Igor file loading dialogs.

When you choose a particular type of image file from the File Type pop-up menu, you are setting a file filter
that is used when displaying the image file selection dialog. If you are not sure that your image file has the
correct file type or file name extension, choose “Any” from the File pop-up menu so that the filter does not
restrict your selection. Note that when you choose “Any” QuickTime will be used to load the file and there-
fore you can only load images from file formats supported by QuickTime.

Names for the loaded matrix waves can be the name of the file or a name that you specify. If you enter a
matrix wave name in the dialog that conflicts with an existing wave name and you have not selected the
Overwrite Existing Waves checkbox, Igor will append a numeric suffix to the new wave names.

Image Loading Details

Except for certain kinds of TIFF and Sun Raster files, images are loaded into a 3D RGB, RGBA, or CMYK
wave. See the ImageLoad operation (see page V-257) for further details.

The wave is of type unsigned byte with layer 0 containing the red channel, layer 1 the green channel and layer
2 the blue channel. The wave may contain four layers if you load a CMYK image or if you load an image that
has an alpha channel in addition to the RGB information. Grayscale TIFF and Sun Raster images are loaded
as 2D waves. If you load a TIFF or Sun Raster image that contains a colormap, Igor creates (in addition to the
image wave) a colormap wave (usually with the suffix “_CMap”). You can display images using the NewIm-
age command or convert image waves into other forms using the ImageTransform operation.

There are two menu choices for the PNG format: Raw PNG and PNG. When Raw PNG is selected, the data
is read directly from the file into the wave. When PNG is selected, the file is loaded into memory, and off-
screen image is created, and the wave data is set by reading the offscreen image. In nearly all cases, you
should choose Raw PNG.

When you choose TIFF from the File Type pop-up menu, an additional checkbox appears: Load Multiple
Images From File. If your TIFF file contains a stack of images, select this checkbox. You can then set the
number of the first image to load (zero-based) and the number of images to load from the TIFF stack.

I1-160

Chapter 1I-9 — Importing and Exporting Data

If just one image is loaded from the TIFF file then Igor creates a single 2D wave. If more than one image is
loaded, Igor creates a single 3D wave, each layer of which contains the data from one of the images in the
stacked TIFF file. Reading a TIFF image stack into a single 3D wave is supported only for images that are §,
16 or 32- bits/pixel deep.

You can convert a number of 2D image waves into a 3D stack using the ImageTransform operation (stac-
kImages keyword).

HDF images can be loaded only by the HDF or HDF5 XOPs, see Loading HDF Data on page 1I-163 for
further details.

Loading Other Files

WaveMetrics provides a number of extensions that add additional file-loading capabilities to Igor. Most of
these file loaders add a menu item to the Load Waves submenu and an entry in the Open or Load File Dia-
log’s list so you can use it interactively. They also usually add a command line operation so you can use
them from an Igor procedure.

The following table lists many of the file loaders included with Igor Pro. Some more obscure file loaders are
also available..

File Loader/Writer Description

GBLoadWave Loads numeric data from “general binary” files.

The XOP can load 8, 16 and 32 bit integer data and 32 and 64 bit IEEE data from a
binary file. It can also load a subset of the file. It can handle numerous kinds of files
including interleaved and byte-swapped files. You must know the format of the
binary file precisely.

GISLoadWave Loads Digital Elevation Model (DEM) and Digital Line Graph (DLG) data for standard
U.S. Geological Survey (USGS) format quadrangles. Such geographic data are the basic
elements of digital mapping.

GWLoadWave Loads an old Macintosh-only file format from GW Instruments.

HDF Loader Loads HDF (Hierarchical Data Format) version 4 and earlier files. See Loading HDF
Data on page II-163.

HDEF5 XOP Loads HDF version 5 files. See Loading HDF Data on page 11-163.

JCAMPLoadWave Loads JCAMP files, used in spectroscopy.

LoadWAVfile Windows only. Adds operations to load and save WAV sound files.

MLLoadWave Loads data from Matlab binary files. WaveMetrics thanks Yves Peysson and Bernard

Saoutic for this file loader.

NILoadWave Loads numeric data from files produced by a number of scientific instruments from
Nicolet Instruments.

SndLoadSaveWave Loads a variety of sound files on Macintosh and Windows.
TDM XOP Loads data from National Instruments TDM files.

XLLoadWave Loads numeric and text data from an Excel spreadsheet file. You need to know the cells
containing the numeric data, for example, B10 - D25.

If you are a C programmer, you can write your own extension to load data into Igor. To do this you need
the Igor External Operations Toolkit, available from WaveMetrics.

The Igor installer puts file loaders and other extensions in "Igor Pro Folder/Igor Extensions" and "Igor Pro
Folder/More Extensions". To use an extension, put an alias (Macintosh) or shortcut (Windows) for it in "Igor
Pro User Files/Igor Extensions" (see Igor Pro User Files on page I1I-45 for details) and then relaunch Igor.

I1-161

Chapter 1I-9 — Importing and Exporting Data

® O 6 lgorProFolder -
[« »][ef S m] [-] >
} ~ Name
> | © Examples
> [____' IFDL Procedures
v [igor Extensions
About |gor Extensions Folder

ANOVASupport.xop

Data Browser Help.ihf

Data Browser.xop Put file loader extensions, or aliases for them,

¥y [anywhere inside the Igor Extensions folder. If

GBLoadWave Help.ihf you’d like, you can make a File Loaders subfolder.
GBLoadWave.xop
XLLoadWave Help.ihf A
XLLoadWave.xop v

I

1 of 31 selected, 7.78 GB available S

3R

Each file loader has an associated Igor help file. The help file provides all the information you need to use
the file loader.

Loading Non-TEXT Files as TEXT Files

The plain text file is the most common type of file used for transferring data from one program into another.
On the Macintosh, files have a file type property. A plain text file is supposed to have the file type TEXT.
Under Windows, text files often have the file name extensions “.txt” or “.dat”.

Macintosh Files

On a Macintosh, choosing Load Delimited Text, Load General Text or Load Igor Text leads to a dialog ini-
tially showing TEXT files as well as files with certain filename extensions. You can choose to show all files
by choosing All Documents from the Show pop-up menu. Choosing All Documents will also allow you to
navigate into package folders.

Windows Files

Under Windows, choosing Load Delimited Text, Load General Text or Load Igor Text leads to a dialog ini-
tially showing files with the extension .txt. You can choose to show files with other common extensions,
such as .dat, or you can show all files.

Loading Row-Oriented Text Data

All of the built-in text file loaders are column-oriented — they load the columns of data in the file into 1D
waves. There is a row-oriented format that is fairly common. In this format, the file represents data for one
wave but is written in multiple columns. Here is an example:

350 2.97 1.95 1.00 8.10 2.42
351 3.09 4.08 1.90 7.53 4.87
352 3.18 5.91 1.04 6.90 1.77

In this example, the first column contains X values and the remaining columns contain data values, written
in row/column order.

Igor Pro does not have a file-loader extension to handle this format, but there is a WaveMetrics procedure
file for it. To use it, use the Load Row Data procedure file in the “WaveMetrics Procedures:File Input
Output” folder. It adds a Load Row Data item to the Macros menu. When you choose this item, Igor will
present a dialog that presents several options. One of the options treats the first column as X values or as
data. If you specify treating the column as X values, Igor will use it to determine the X scaling of the output
wave, assuming that the values in the first column are evenly spaced. This is usually the case.

I1-162

Chapter 1I-9 — Importing and Exporting Data

Loading HDF Data

HDF stands for “Hierarchical Data Format”. HDF is a complex and powerful format and you will need to
understand it as well as the structure of your HDF files to conveniently use it. Information on HDF is avail-
able via the World Wide Web from:

<http://www.hdfgroup.org/>

The current version of HDF is HDEF5. Igor Pro includes