Tektronix TDS7404 Digital Phos;

ilr %

Tk Preven | ks = du

—

J | A\l U |

g

=y

bt




PM Operation

Fast PM: pulse rise time ~2ns, gain: 3:107
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Basic Counting System

Charge sensitive preamplifier: Voltage output pulse height

Bias (Uo)  (1V) independent of detector C

)
ﬁ Pulse Height
@ N Analysis
iy WA e ravss
——Detector Digitization
[ A+t N ! 5 unipolar

BN (JH[N
Ground

— AU o Binary data
ipolar
R: Load resistor 0 to computer
C: Insulate electronics
from high voltage (bias) Amplifier/Shaper:

Pulse height 100 mV differentiates (1x or 2x)
Final amplitude 2-10V

N




Fast-Slow Signal Processing

Produce analog signal =2

Binary
% data to
Source computer

B000 (H0N

Produce logic signal -

vt | Y
CFTD Ur t
Input Constant-Fraction Timing Disc.:

- U(t+4t)  Corrects for “walk” t(U)

u’(t) .
CFTD U’(t) = F-U(t) - U(t+4t)
Internal 0 2 >
! t 5t (U’'=0) independent of U
| t(U'=0)-t(U=U;) measures t,
CFTD ! rise time
Output :

(here fraction f = 0.5)




Pulse Shape Analysis

Different signal decay times for 2 radiation types are
translated into different amplitudes
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Scintillation Mechanism: Organic Scintillators

Excitation of molecular states

\ \ determined by = electrons:
singlets (ER) and triplets (E@).

singlet triplet Form vibrational band heads
Trapping of e- in triplet states,
S3 1\ o J slow decay to S, ground state
— C
S; ,ﬁ‘ i% LE Triplet excited (3:1) via ion
e Y T recombination.
>1 f g 2 I
2 T Decay via collisions
\>, 1.2 Ty TT - SS+phonons (t~ 300 ns)
S @
}\’\\\9 E1l excitation/radiation less
e | transitions depends on ionization
S, To density (A,Z,E).
excitation o 9 Electromagnetic radiation and
° 3 '5_5 heavy particles have different
= § o 9 excitation patterns, sequential
- fluorescence/phosphorescence >

PSD discrimination.



Pulse Shape Analysis

2 signals of
equal total
light output
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Radiation Specific Light Output Response

Similar to organic scintillators but not quite as distinct.

ast
component
slow

Different radiation leads
to different mix of fast
and slow = ID

Pulse shape
discrimination
retained electronically >
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Non-Linear Light Output Response

Response of BC-400
Scintiliation Light Produced vs. Particle Energy
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Particle Energy (MeV)

For a given energy, electrons
(photons) have the highest

light output.

Heavy particles leave weaker
useful signals/energy. They
are associated with ion
recombination/quenching

v Balcnelor et al
a Czirr et ol
= .rseph 21 al

v Doese Arbeit

Protonenenergie [MeV

NE 213 liquid scintillator: electron-
equivalent (ee) and proton recoil
energies E, <2 E,

E(E,) =

(0.18MeV*?)E}* E, <5.25MeV
0.63E,-1.10MeV E, >5.25MeV




Efficiency of p-Recoil NeutronDetectors

Angle dependent n-p energy transfer - continuous recoil energy spectrum.
Idealized proton-recoil energy spectrum dP/dE:
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Transistor Amplifier (Emitter Follower)

V.
Rg
E Vout
B
Vin fo

Control npn transistor pnp transistor
of water
current Uout

Voltage gain: A, = ~ 1 current gain » 1

in



Pre-Amplifiers

Task: amplify weak detector signals (mV) to ~ 1V, transmit through cable.
Main types: charge-sensitive or voltage-sensitive

Charge sensitive preamps integrate charge Q(t) ~ E;.,,s;x from detector

directly. Use for semiconductor diodes.

Voltage sensitive preamps amplify U(t) = Q(t)/C, C = const.! = PM, PC

Detector is essentially a capacitor Cj,

o l== =
5

—

C

delivers a time dependent

ﬁ charge Q(t) and current I=dQ/dt
ﬁgd 7 0 For E measurement, integrate Q
—> For t measurement, differentiate Q

R Use operational amplifiers (op-amp)
R,C  for either and many other tasks.

/ *ﬁﬂ{

Replacement
circuit for
detector and
decoupling



Operational Amplifiers

Gain is very high (~109), inverting.
Amp properties determined by feedback c

Feeding back negative input signal to the
summation point cancels the signal at =

U, U R

I,=0=I_ +I =—-0420ut 1y . =-—"1.U
> n Rln Rf: out Rln n
0=I_+1 :%+C dUO“t—>U S -J'U-dt
in f Rin f dt out Rme in
Integrator
dU.
Uout = _Cian dén

Differentiator



Amplifiers

Inverting Amplifier

The behavior of most

configurations of op-amps
can be determined by
applying the "golden B 4
rules”. For an inverting vy,
amplifier, the current rule
tries to drive the current to
zero at point A. This
requires:
Vin = - Yout
R R o c . -
- E Non-inverting Amplifier
El;hgf?c:: 3: WolegE The behavior of most
o configurations of op-amps
v R can be determined by
—~out = 21 applying the "golden
Vin R, rules". For an non-
mverting amplificr, the
current rule tries to drive
the current to zero at point
A and the voltage rule R 2
makes the voltage at A

equal to the input voltage,
This leads to Yino——

Via = Vout-Via
Ry R¢

and amplification

Voul =]+&.
Vin Ry



Charge Sensitive Preamp

in

Inverting, integrating preamp

R, \ Pulse decay governed by
tdEC% 1/Rfo.

C, Additional amplifier necessary

for pulse shaping and gain.

S VA

t




Main/Shaping Amplifiers

Tasks: 1) Linear amplification to pulse heights of U =~(1-10)V

2) Improvement of signal/noise ratio (integration)
3) Pulse shaping (Gaussian shape is best)

Y Y h 4
1st diff integr 2nd diff

More versatility: RC-circuits - active filters



NIM Signal Standards

(National Instruments Methods)

+10V==2 Linear analog NIM signals
oV >
Slow logical NIM (TTL)
pulses:discriminators,
+10Ve= = gates,...
1 \\On +5V — “1" \\OII
oV oV ‘ \ TTL-Logic

—>: :<—~2ns

>
NIM-
Fast logical NIM ‘ gate/trigger
-16mA signals for fast signal

-0.8V/50Q2 | timing/triggering




Discriminator/Trigger

Task: Produce a logical signal, whenever
analog signal exceeds threshold U,... Use for
logical decisions (open acquisition,...). Exists for
slow and fast pulses.

__Re

R
o—=—=—L-M | |

ﬂ
l"disc _V/ l
Mono
A < +10V Vibrator |
] gL
Input “Iﬁ/ Output
O T O

For fast timing, use negative NIM logic units



Zero-Crossing Triggering

Produce fast, bipolar linear pulse.

Possible: different gains for positive
and negative parts = zero crossing
at different time (fraction of time to

maximum)

Produce “saturated” uniform pulse

Differentiate saturated pulse, use
triplet pulse as input for trigger
(negative pulse polarity).

Utrig__ i
Trigger i
output L Trigger output appears at zero
signal ‘ | t crossing

(Internal delays neglected)



Constant-Fraction Discriminator

amplitude Zero crossing timing always
dependent at same physical time,
Lo leading edge independent of pulse
discr. output amplitude for fixed pulse
timing shape: no “walk” with
—IBI=ruis? time energy

jitter IA

A= U
{::>—mmm o
Delay |_|

V k

H Sm— —
U . L

[[ Trigger

L Ur=t-Uss Can utilize for PSD!




Logic Modules

Overlap Coincidence

U
U: :Uout=
U;AU,
UIA 11
[ X
< t
00,
U01t ]
.
of
[ s
~U complement
. >

Or (inclusive)

Uv,o——
—O U=
U0 U,VU,
ufd
U, ! | >t For fast
! timing:
|
: J~_I -i_l>t use fast
T : : : negative
opt logic
I I
U, o——
U1 Uout=
2 U UIA_IUZ

Anti-Coincidence



Signhal Transmission

outer .

— inner conductor
\

dielectric outer conductor

medium > 7

Coaxial cables/transmission lines €<- traveling waves in cavity resonators

L: inductivity/length

2 > |
Wave equation (R=0): ou - .C oUl c: capacity/length

072 "~ pt2| depend on diameter
and dielectric
signal propagation speed _
(speed of light): c=1/4JLC typically c=5 ns/m
characteristic resistance B 7 =500o0r930
Zy,=0hmic resistance! Zo - L/C uged for timing,

For R#0, Z,(w) complex spectroscopy, resp.



Impedance Matching

———————————

For impedance matching,
Ri,aq=Zo, Cable looks infinitely
long: no reflections from end.

T T A
E/'
—
A
o
Q
Q

r—=—-——-—-—-----

e ,
-~ Zanger " receiver For mismatch, R .4 # Z,,
( O reflection at end, traveling
I‘I'IRd ‘ | |R| . back, superimpose on signal
Oa
[ - NE——

n

| II Uren _ Rioad = <o
< I'—I U, Rload +Z 0

Polarity of reflected signal R ,4=0, o



Cable Reflections

Receiver input impedance
Ricag # £o, 2 USE
additional Ohmic
termination in parallel

Open end: Ry 4= c Input
and reflection equal
polarity, overlap for t >
2Tcable

> Tcable = 2L/C

Short: R,,4=0, Input and

_I"""'"[ reflection opposite polarity,
; | | > superposition = bipolar

Multiple (n) reflections attenuated by R™






