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Abstract

Coloring graphs is a known NP-Complete problem. However, for cer-
tain families of graphs (such as triangle free planar graphs, bipartite
graphs, or graphs with maximum degree 3 or less) this problem is solv-
able in deterministic polynomial time. Due to the strong structural re-
quirements of diameter 2 graphs, we are interested in whether diameter 2
graphs are such a family. We explore various approaches to this problem
that utilize a diameter 2 graphs unique structure.

1 Introduction

The question of whether diameter 2 graphs are 3-colorable in polynomial time
has a well known open problem in graph theory. Diameter 2 graphs are graphs
where each pair of vertices are either neighbors, or share a common neighbor.
While graph coloring in general is an NP-complete problem, subexponential time
colorings, polynomial time approximations, and polynomial time algorithms on
certain classes (or graphs with restricted subgraphs) are known. In this paper,
we explore a number of approaches to this difficult open problem. We outline
methods for coloring diameter 2 graphs and provide incremental results towards
faster 3 coloring for diameter 2 graphs.

In section 2, we provide background on graph theory, spectral theory, and
overview some interesting results. In section 3, we overview historic spectral col-
oring algorithms, and provide additional proofs and modifications. In section 4,
we overview seed based coloring, providing bounds and exploring results related
to dominating sets in diameter 2 graphs. Finally, in section 5, we overview
families of diameter 2 graphs.

2 Spectral Background

2.1 Basics

A graph G = (V,E) is a set of vertices v1, v2 · · · ⊂ V and edges (vi, vj) ∈ E
between them. We may write edges as vivj . An undirected graph is a graph
such that (vi, vj) ∈ E =⇒ (vj , vi) ∈ E. A simple graph has that we do not

1



have (vi, vj) ∈ E if i = j, and we have at most one edge between any pair of
vertices i, j. A finite graph has |V | < ∞. For the remainder of the paper, when
we say graph we refer to a finite, simple, undirected graph.

Spectral graph theory studies the relation between a graph and the eigen-
values and eigenvectors corresponding to the various matrices associated with a
graph. An eigenvalue λ and associated eigenvector v with respect to a matrix
M have the property that Mv = λv. The spectrum of matrices associated with
a graph can reveal properties that would otherwise be difficult to obtain.

We explore some spectral properties of various matrices associated with
graphs, including the adjacency matrix, Laplacian, edge Laplacian, and signless
Laplacian. The spectrum can be an unnatural device, and this section seeks to
establish familiarity with the spectrum and possible ways to use it.

Matrices with respect to a graph G will have a subscript denoting this. If
context if obvious this subscript will be omitted. First, we define common
matrices associated with graphs.

Definition 1. The adjacency matrix A has entry aij = 1 if there is an edge
between vertices vi, vj and 0 otherwise.

Definition 2. The degree matrix D has entry dij = deg(vi) if i = j, and 0
otherwise.

Definition 3. The vertex-edge incidence matrix R of a graph G is n×m, with
entry rij = 1 if vertex vi is an endpoint of edge ej, and 0 otherwise.

Definition 4. Laplacian L is defined as A-D.

The Laplacian is as commonly used as the adjacency matrix, if not more so,
in spectral graph theory. It is famously used to determine algebraic connectivity,
Cheeger’s bound (for bottlenecks and sparse cuts), mixing time, among uses. A
question to check your understand is: when do the adjacency matrix and the
Laplacian provide the same spectral information? Other matrices introduced,
such as the signless Laplacian or line graph, are less commonly used. Next, we
explore some basic properties of graph associated matrices. The following defi-
nition is an often useful property of a matrix, with applications in optimization
and other fields.

Definition 5. We say a symmetric n × n matrix A is positive semidefinite if
xTAx ≥ 0 for all x ∈ Rn.

This definition leads to the first result exemplifying the usefulness of the
spectrum, as the following result can be approximately calculated in polynomial
time by a computer, whereas manually testing all x ∈ Rn cannot.

Lemma 2.1. A symmetric matrix is positive semidefinite if and only if all
eigenvalues are nonnegative.

Lemma 2.2. The Laplacian is positive semidefinite .
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Proof. We have

xTLx = xT

 ∑
(i,j)∈E

(ei − ej)(ei − ej)
T

x

=
∑

(i,j)∈E

xT (ei − ej)(ei − ej)
Tx

=
∑

(i,j)∈E

(xi − xj)
2.

Definition 6. The signless Laplacian |L| is defined as A+D. Note this matrix
is also positive semidefinite.

Lemma 2.3. If R is the vertex-edge incidence matrix of a graph G, then RRT =
A+D, and RTR = AL(G) + 2I|E|.

Proof. The first follows from observing that rows multiplied with a transpose
of itself will count all edges adjacent to a vertex (which is its degree), and rows
multiplied with transposes of other rows will yield a 1 if they share an edge, and
0 if not. Since we are dealing with simple graphs, we will not count more than
one edge.

The second follows similarly, by noting that each edge connects exactly 2
vertices, so the ”degree matrix” is 2I|E|.

Next, we investigate further spectral objects relating to the preceding ma-
trices, and results relating to them. The characteristic polynomial is a useful
tool to represent the spectrum. We also explore notions of equivalence under
the spectrum.

Definition 7. The characteristic polynomial of the adjacency matrix of a graph
G is denoted by PG(λ) = det(λI −A).

Definition 8. The characteristic polynomial of the signless Laplacian of a graph
G is denoted by QG(λ) = det(λI − |L|).

Definition 9. Two graphs are called cospectral if they have the same spectrum.

Definition 10. Two graphs are called Q-spectral if they have the same poly-
nomial Q(λ).

Definition 11. For a graph G, we define the line (dual) graph L(G) is the
adjacency graph of edges for G. Explicitly, we have V (L(G)) = E(G), and
vertices in L(G) are adjacent if their corresponding edges in G share an endpoint.

Definition 12. Two graphs are called L-spectral if their line graphs are cospec-
tral.
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Lemma 2.4. For a matrix M and its characteristic polynomial P , we have
PM+cI(λ) = PM (λ+ c).

Proof. Note that (det((M + cI) − λI) = det(M + (c − λ)I), then complete a
change of variable.

Lemma 2.5. Let B ∈ Rn×m, with n ≤ m and rank(B) = r. Then,

det(λIm −B⊤B) = λm−n det(λIn −BB⊤)

Proof. Let M = B⊤B ∈ Rm×m, and N = BB⊤ ∈ Rn×n. We have that
rank(M) = rank(N) = r. Observe that for any vector x ∈ Rm,

x⊤Mx = x⊤B⊤Bx = (Bx)⊤(Bx) = ∥Bx∥2 ≥ 0,

so M is positive semidefinite. Similarly, N is positive semidefinite.
Now, suppose λ ̸= 0 is an eigenvalue of M with eigenvector x ∈ Rm. Then:

B⊤Bx = λx.

Apply B to both sides:
BB⊤(Bx) = λ(Bx).

So either Bx = 0, which would imply λ = 0, a contradiction, or Bx ̸= 0, and
Bx is an eigenvector of N with eigenvalue λ. A similar argument shows that
every nonzero eigenvalue of N is also an eigenvalue of M .

Then, let the nonzero eigenvalues of B⊤B and BB⊤ be µ1, . . . , µr. We have:

det(λIm −B⊤B) =

r∏
i=1

(λ− µi) · λm−r

det(λIn −BB⊤) =

r∏
i=1

(λ− µi) · λn−r.

Therefore,

det(λIm −B⊤B) = λm−n det(λIn −BB⊤).

Lemma 2.6. [Cvetkovic et al. [CRS96]] PL(G)(λ) = (λ+2)m−nQG(λ+2), and
if Spec(G) = λ1, . . . , λt, then the eigenvalues of L(G) are θi = λi − 2 i ∈ [t],
θi = −2 else.

Proof. This follows from 2.3 and 2.5.

Theorem 2.7 (Cvetkovic et al. [CRS96] ). Q-spectral implies L-spectral.

Proof. If graphs are Q−spectral, then they have the same number of vertices
and edges. Then, L-spectrality follows from 2.6.
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Figure 1: Butterfly Graph

However, note that we can find graphs that share a line graph Laplacian
that are not Q−spectral. To see this, consider K4 − e ∪ K2 and the butterfly
graph 1 with an additional disconnected vertex. Then, both line graphs have
characteristic polynomial λ(λ2 − λ − 4)(λ − 1)(λ + 1)2, however the first has
Q polynomial λ(λ− 1)(λ− 2)(λ− 3)(λ2 − 5λ+ 2), while the latter has λ2(λ−
1)(λ− 2)(λ− 3)(λ2 − 5λ+ 2).

Lemma 2.8. An independent set in L(G) corresponds to a matching in G.

Proof. By selecting edges in a matching, we ensure that these edges are adjacent
to no other edges. Thus, these edges are not connected in the line graph.

Lemma 2.9. For a graph G, |E| = −p1

2 where p1 is the coefficient of λn−1 in
QG.

Proof. The coefficient of λn−1 is equal to −tr(|L|), and the trace of |L| is equal
to the sum of vertex degrees of G. This is equal to double the number of edges,
so we have p1 = −tr(|L|) = −2|E|.

The following definition is another useful tool for interacting with the spec-
trum, used in many proofs. We present it alongside some results we can deduce
by utilizing it.

Definition 13. The Rayleigh quotient of a symmetric matrix A is the normal-
ized quadratic form, expressed

xTAx

xTx

By maximizing or minimizing over nonzero x, we can find the largest and small-
est eigenvalues of A.

Theorem 2.10 (Cvetkovic et al. [CRS96]). Let H be G after switching edges
ab, cd to non edges ad, bc. Let x be a principal eigenvector of G. If (xa−xc)(xb−
xd) ≥ 0. then λH

1 ≥ λG
1 , with equality iff both of the two products are 0.

Proof. First, note that

λG
1 = sup

x∈Rn−{0}

xTQGx

xTx
= max

∥x∥=1
xTQx
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, then if we change edges we have, if x is the eigenvector corresponding to λG
1 ,

that

λH
1 − λG

1 = max
∥y∥=1

yTQHy − xTQGx ≥ xT (AH −AG)x+ xT (DH −DG)x

With equality if and only if x is also the principle eigenvector for QH . Then,
from this we obtain

λH
1 − λG

1 ≥ 2(xa − xc)(xb − xd)

and our result follows.

Theorem 2.11. Let λ1 be the largest eigenvalue of A. Then,

λ1 ≥ 2m

n

Proof. Consider that λ1 = maxx∈Rn
xTAx
xT x

, and let x = 1n. Then, we count
each edge twice in the numerator, yielding 2m and the denominator will be n
summations of 1, so we have our desired lower bound.

Theorem 2.12. Let D be the distance matrix, Ā the complement and J of all
ones. Then,

D2 = 4(J − I)Ā+A2

D = 2(J − I) +A.

2.2 Hamiltonian Cycle

A Hamiltonian cycle is a path on a graph that starts at a vertex and traverses
edges of the graph, visiting each vertex exactly once, finishing on the vertex it
started on, and visiting each edge no more than once. Finding a Hamiltonian
cycle on an arbitrary graph is known to be an NP-complete problem [Kar72].
In this section, we explore a result by Veldman, where they prove that the Line
graph of a diameter 2 graph is Hamiltonian. In general, solving the Hamiltonian
cycle problem is NP-complete, so this is the first instance where the diameter 2
property allots us more power than arbitrary graphs.

Lemma 2.13. Given a star graph K1,s, the line graph L(K1,s) has a Hamilto-
nian cycle.

Proof. Since all edges are adjacent to the central vertex (and thus each other),
we have that L(K1,s) = Ks.

Theorem 2.14. For all integers n ≥ 4, the line graph of the complete graph
Kn has a Hamiltonian cycle.
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Proof. Assign the vertices some arbitrary order. Then, traverse all edges of
v1 in any order such that we traverse the edge connected v1 to v2 last. Then,
traverse the edges of v2 (excluding the one we already traversed earlier) similarly,
traversing the edge connecting v2 to v3 last. Repeat this until we have traversed
the entire graph in this manner, then return from vn to v1. Then, we traversed
no edge twice, and have touched every edge.

Definition 14. A circuit C is a walk in which all edges are distinct, and the
first and last vertices are equal. A D−circuit is a circuit in which every edge of
G is incident with at least one vertex in the D−circuit.

Definition 15. If C is a circuit and Z a cycle of G such that V (Z) ∩ V (C) ̸=
∅ ≠ V (Z) ∩ (V (G) − V (C)) and G[E(C)△E(Z)] (where △ denotes symmetric
difference) is connected, then Z is called a C-augmenting cycle. Clearly, if C is
a circuit and Z is a C-augmenting cycle, then G[E(C)△E(Z)] is also a circuit,
and |V (G[E(C)△E(Z)])| > |V (C)|, implying that if C is a maximal circuit, we
have no C−augmenting cycle.

Definition 16. Define τ to be P3 with two new non-adjacent vertices adjacent
to one of the end vertices. Similarly, define τ+ to be P3 with two new adjacent
vertices adjacent to one of the end vertices.

Lemma 2.15 (Veldman [Vel88]). Let G be a graph and C a maximal circuit.
Then, there is no cycle Z with

V (Z) ∩ V (Z) ̸= ∅ ≠ V (Z) ∩ (V (G)− V (C)) ∧ |E(z) ∩ E(C)| ≤ 1

Definition 17. A block of a graph is a maximal connected subgraph with no
cut-vertices, that is no vertices whose removal would disconnect the graph. For
example, all complete graphs of size 3 or larger are blocks, while no paths of
length 3 or longer are.

Lemma 2.16 (Veldman [Vel88]). If x1, . . . , xk is a path in G, and for 1 ≤ i <
j < k if we have xixi+1, xjxj+1 in the same block B of G, then xmxm+1 ∈
E(B)∀i < m < j.

Definition 18. The neighborhood of a set of vertices S ⊂ V is

N(S) = {vi ∈ V/S
∣∣∣ eij ∈ E, vj ∈ V }.

The closed neighborhood of a set of vertices S ⊂ V is

N [S] = {vi ∈ V/S
∣∣∣ eij ∈ E, vj ∈ V } ∪ S.

Theorem 2.17 (Veldman [Vel88]). Let G be a connected graph that is not a
tree such that every subgraph isomorphic to τ or τ+ with d(ai) ≥ 2, i ∈ {1, 2}
satisfies at least one of the following:

1. |N(a) ∩N(c)| ≥ 2
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2. |N(b) ∩N(c) ≥ 1|

3. For i ∈ {1, 2}, |N(b) ∩N(ai)| ≥

{
2 a1a2 ∈ E(G)

3 else

4. For i ∈ {1, 2}, |N(a) ∩N(b)| ≥ 1

Then L(G) is Hamiltonian

Proof. Let G satisfy our initial conditions, but assume L(G) is non-Hamiltonian.
Let C be a maximal circuit of G. Then C is not a D-circuit of G, as by
Harary and Nash-Williams G would otherwise have Hamiltonian L(G). Thus
there exists a path u1uu2 with u1, u2 /∈ V (C) and u ∈ V (C). Let vv1, vv2 ∈
E(C). Then, as a result of 2.15 it follows that some subgraph H ≤ G with
vertices {u1, u2, u, u1, u2} is isomorphic to τ or τ+, and (N(u1)∩N(u))−{u2} =
N(u2)∩N(u) = ∅. . We must have dC(u1) ≥ dC(u2) ≥ 2 (i = 1, 2), so we know
that H satisfies (3) or (4).

First, assume that H satisfies (3). Then, assume H = τ+, so v1v2 ∈ E(G).
Assume without loss of generality that u2 and v1 have a common neighbor
w with w ̸= u. By 2.15, v1w ∈ E(C). If v1v2 ∈ E(C), then vu2wv1v is a
C-augmenting cycle, a contradiction with 15. If v1v2 ∈ E(G) − E(C), then
vu2wv1v2v is a C-augmenting cycle, which contradicts that C is maximal.

Thus, we can only have that u1u2 /∈ E(G), so H = τ . Assume without loss
of generality that v1 and u2 have common neighbors not equal to v, label these
w1 and w2. By 2.15, v1w1, v1w2 ∈ E(C). If v1v, v1w1, and v1w2 are in the same
block of C, then C − {v1w1, v1w2} is connected, implying that u2w1v1w2u2 is
a C-augmenting cycle, contradicting 15. If v1v and v1w1 are in different blocks
of C, then C − {v1v, v1w1} is connected ( since every block of C is 2-edge-
connected), so vu2w1v1v is a C-augmenting cycle, which contradicts that C is
maximal.

So H cannot satisfy (3), and instead must satisfy (4).
Call a path P special if it satisfies the following requirements:

• P has origin v,

• E(P ) ⊆ E(C),

• each block of C contains at most one edge of P , and

• u1 and the terminus of P have a common neighbor.

Note that, if P is a special path, then, by the third requirement, C − E(P )
is connected.

Since H1 satisfies (4), G contains a special path of length 1. Let P be a spe-
cial path of maximum length, x the terminus of P , y the immediate predecessor
of x on P , and z a common neighbor of u1 and x.Then , we know z /∈ V (P ), oth-
erwise G contains the C-augmenting cycle Q1 ∪ vu2u1z, where Q1 denotes the
(v, z)-subpath of P . Also, z ̸= u2, otherwise P ∪ vu2x is a C-augmenting cycle.
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Furthermore, xz is an edge of C, otherwise the cycle Z1, with Z1 = P ∪uu2u1zx
is a C-augmenting cycle. Moreover, the edges xy and xz are in the same block
of C; assuming the contrary, by 2.16, all edges of E(P ) ∪ {xz} are in different
blocks of C, again yielding the contradiction that Z1 is a C-augmenting cycle.
This contradiction is avoided only if {xy, xz} is a 2-edge cut of C. Thus, either
dC(x) = 2 or x is a cut vertex of C. If dC(x) = 2, then G[E(C)△E(Z1)] con-
sists of a trivial component and a component that is a circuit; the latter circuit
contains one vertex more than C, contradicting the maximality of C. Thus x is
a cut vertex of C.

Let B be a block of C containing x and different from the block that contains
xy (and xz). Then, by 2.16, B differs from all blocks of C that contain an edge
of P . Let xx1 and xx2 be two edges of B and let H1 = G[{u1, z, x, x1, x2}].
By 2.15, u1x /∈ E(G). Also, u1xi /∈ E(G), otherwise P ∪ vu2u1xix is a C-
augmenting cycle (i = 1, 2). Since P is a longest special path, zxi /∈ E(G)
(i = 1, 2), so H1 is isomorphic to τ or τ+. Since dG(xi), dC(xi) ≥ 2 (i = 1, 2),
H1 satisfies one of our requirements. We finish by showing that each case yields
a contradiction.

First suppose H1 satisfies (1). Let z1 ∈ (N(u1) ∩ N(x)) − {z}. As in the
last paragraph, we have z1 /∈ V (P )∪ {u2}, xz1 is an edge of C, and xz1 and xy
are in the same block of C. Since xz is also in this block, C − (E(P )∪ {xz}) is
connected, and Z is a C augmenting cycle, which is a contradiction.

Now suppose H1 satisfies (2). Let y1 ∈ N(z) ∩ N(x). As a result of 2.15,
y1 /∈ {u1, u2}. If y1 ∈ V (P ), then Q2∪vu2u1zy1, with Q2 as the (u, y1)-subpath
of P , is a C-augmenting cycle, whether zy1 ∈ E(C) or not. Thus we must have
y1 /∈ V (P ). If xy1 and zy1 are edges of C, then Z1 is a C-augmenting cycle, else
P ∪ vu2u1zy1x forms a contradiction.

Next suppose H1 satisfies (3), with b = z and x1, x2 = a1, a2. Let x3 ∈
(N(z) ∩N(x1)) − {x}. Earlier arguments imply that x3 cannot be a vertex in
V (P )∪{u1, u2}. We consider all possible cases for the membership of x1x3, x3z
with respect to C. If both x1x3 and x3z are edges of C, then Z1 is a C-
augmenting cycle. If both x1x3 and x3z are in E(G) − E(C), then the cycle
Z1, with Z1 = P ∪ vu2u1zx3x1x is a C-augmenting cycle. Assume x1x3 ∈
E(G) − E(C) and x3z ∈ E(C). By 2.16, x3z is not an edge of the block
B of C containing x1, so, x3z is not a cut edge of the connected subgraph
(C+x1x3)−(E(P )∪{xx1}) of G, since zx∪Q3∪x1x3 ( Q3 is an (x, x1)-path in
B − xx1) is a (z, x1)-path in this subgraph. This implies Z1 is a C-augmenting
cycle. Finally, Now assume x1x3 ∈ E(C) and x3z ∈ E(G) − E(C). We finally
distinguish two cases.

First, if x1x2 ∈ E(G), then x3 ̸= x2, otherwise H1 would satisfy (2), which
we already proved generates a contradiction. If x1x2 ∈ E(C), then Z1 is a
C-augmenting cycle. If x1x2 ∈ E(G) − E(C), then P ∪ uu2u1zx3x1x2x is a
C-augmenting cycle, so we must have no edge x1x2.

Thus, we must have that x1x2 /∈ E(G). Consider some x4 ∈ (N(z)∩N(x1))−
{x, x3}. Similar to the consideration for x3, we may assume x4 /∈ V (P ) ∪
{u1, u2}, x1x4 ∈ E(C), and x4z ∈ E(G) − E(C). If both x1x3 and x1x4 are
edges of B, then B−{xx1, x1x3} is connected and Z1 is a C-augmenting cycle.
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Else, with x1x4 /∈ E(B), then by 2.16 all edges of E(P ) ∪ {xx1, x1x4} are in
different blocks of C, and hence P ∪ vu2u1zx4x1x is a C-augmenting cycle.

Finally, suppose H1 satisfies (iv). Assume without loss of generality that
N(u1) ∩ N(x1) ̸= ∅. Then P ∪ xx1 is a special path longer than P , our final
contradiction.

Theorem 2.18 (Veldman [Vel88]). If G is diameter 2 with at least 4 vertices,
L(G) is Hamiltonian

Proof. If G has diameter 1, then G is complete, so L(G) is Hamiltonian by 2.14.
Else, every induced subgraph isomorphic to τ or τ+ satisfies 2.17, so either L(G)
is Hamiltonian or G is a tree. If G is a tree, then G is isomorphic to the star
graph, and L(G) is Hamiltonian by 2.13.

2.3 Removals and Interlacing

When considering graphs, we are often interested in removing or adding edges or
vertices in order to influence the diameter of the graph. The following theorem
gives insight into how vertex removals impact the spectrum of the graph.

Theorem 2.19 (Cauchy, Poincare). Suppose A ∈ Rn×n is symmetric. Let
B ∈ Rm×m with m < n be a principal submatrix (obtained by deleting both the
i-th row and i-th column for some i, n−m times). Suppose A has eigenvalues
λ1 ≤ · · · ≤ λn and B has eigenvalues µ1 ≤ · · · ≤ µm. Then:

λk ≤ µk ≤ λk+n−m for k = 1, . . . ,m.

Proof. Williamson [WD16]
Without loss of generality, assume

A =

[
B XT

X Z

]
.

Let {x1, . . . , xn} be the eigenvectors of A, and {y1, . . . , ym} the eigenvectors of
B.

Define the following subspaces:

V = span(xk, . . . , xn), W = span(y1, . . . , yk),

W ′ =

{[
w
0

]
∈ Rn

∣∣∣∣w ∈ W

}
.

Since dim(V ) = n−k+1 and dim(W ′) = dim(W ) = k, there exists w′ ∈ V ∩W ′,

and w′ =

[
w
0

]
for some w ∈ W . Thus,

w′TAw′ =
[
wT 0

] [B XT

X Z

] [
w
0

]
= wTBw.
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Since we have λk = minx∈V
xTAx
xT x

, βk = maxx∈W
xTBx
xT x

, we can conclude

λk ≤ w′TAw′

w′Tw′ =
wTBw

wTw
≤ βk.

To prove the second inequality, define:

V = span(x1, . . . , xk+n−m), W = span(yk, . . . , ym),

W ′ =

{[
w
0

]
∈ Rn

∣∣∣∣w ∈ W

}
.

Then dim(V ) = k+n−m and dim(W ′) = m−k+1, so there exists w′ ∈ V ∩W ′

and w′ =

[
w
0

]
for some w ∈ W . We again compute w′TAw′ = wTBw, therefore,

λk+n−m = max
x∈V

xTAx

xTx
≥ w′TAw′

w′Tw′ =
wTBw

wTw
≥ min

x∈W

xTBx

xTx
= βk.

3 Spectral Graph Partitioning

With a familiarity in spectral graph theory in hand (for additional reference
consult [CDS95] or [Spi25]), we now look to 3-color graphs using the spectrum.
We provide the meaning of this statement below, then explore algorithms for
achieving this end.

Definition 19. We say a k−coloring is a function ϕ : V → {0, . . . , k}. A
proper coloring is one such that if vw ∈ E, we have ϕ(v) ̸= ϕ(w). Informally,
this means that any two vertices that share an edge cannot be the same color.
Henceforth, when we say coloring we mean proper coloring.

Definition 20. An independent set is a set of vertices S ⊂ V such that no
vertices in S share an edge. Note that partitioning a graph into independent
sets is equivalent to coloring it.

3.1 Aspvall and Gilbert

We look to use the spectrum to color graphs, or, equivalently, partition a graph
into independent sets. Aspvall and Gilbert [AG84] provided an algorithm that
will partition a graph into independent sets using eigenvectors of the adjacency
matrix. It is easy to see that we can do this using all eigenvalues, as this
will partition the graph into independent sets of size one. They conjecture
that the algorithm will work for arbitrary graphs when considering only the
negative eigenvalues, and furthermore Aspvall and Gilbert prove that taking
k − 1 negative eigenvalues of the adjacency matrix will partition a block k
regular graph. They do not extend this to general graphs

11



un un−1un−2

+ + − bluev1

+ − − greenv2

− + − redv3

− − + yellowv4

+ + − bluev5

− + − redv6

+ + + purplev7

Figure 2: Sign Partitioning

Definition 21. We say a sign coloring is a partition assigned by eigenvectors,
where vertices are the same color if their sign with respect to a subset of eigen-
values is the same. Let 0 be positive.

For example, consider the following partition of the first 7 vertices of a
graph by the smallest 3 eigenvalues. We note that v1, v5 have the same sign
with respect to these eigenvalues, and so they are in the same partition.

Definition 22. We say a block regular graph is a graph with a partition such
that each vertex in a partition, or block, has the same degree as all other vertices
in its block. A block k regular graph has k such blocks.

Theorem 3.1 (Aspvall and Gilbert [AG84] ). We can partition a graph into
independent sets using the sign pattern of its eigenvalues.

Proof. Perron and Frobenius state that for (connected) graphs, the first eigen-
vector is all positive. We can choose an orthonormal basis for the eigenvectors.
If we have multiplicity, we take a linear combination of associated eigenvectors.
Call the matrix with columns as eigenvectors U .Then, the rows are the signs.
Since the first element in each row is positive, we must have at least one pair of
row entries of differing signs in order for their inner product to be 0.

Lemma 3.2. Reordering vertices preserves the spectrum of the adjacency, Lapla-
cian, signless Laplacian, and line graph.

Proof. Consider some matrix M , and a permutation matrix P that reorders
the rows and columns of M into M ′ = PMPT . Note that P is an orthogonal
matrix, so we have PT = P−1, so we have M ′ = PMP−1. Thus, M ′ and M are
similar, and so they have the same eigenvalues. Then, we can have M be any
associated matrix with a graph G, and see that reordering matrices is equivalent
to applying a permutation matrix PMPT , and the result follows.
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Definition 23. A graph B is block regular if for each block, the row and column
sums are constant. A tripartite block regular graph has 3 such blocks, where
vertices within blocks do not share edges.

Definition 24. The degree graph β of a block regular tripartite graph has bij
the row some of block ij and bji the column sum.

Theorem 3.3 (Aspvall and Gilbert [AG84]). Let G be a block regular 3- par-
tite graph. Then there is a set of 2 eigenvectors whose sign patterns properly
partition vertices of the graphs.

Proof. Let G be tripartite with partition V1, V2, V3 with each part having size
r, s, t respectively. Then, let

A =

 0 A12 A13

AT
12 0 A23

AT
13 AT

23 0

B =

 0 b12 b13
b21 0 b23
b31 b32 0


Where A is the adjacency matrix of G, and B is the block degree matrix.
Observe that these share eigenvalues, up to multiplications by 1i to scale the
block degree eigenvector to match the dimension of A (and vice versa), that is
(α1, β1, γ1)T is an eigenvector of A with eigenvalue λ if and only if (α, β, γ) is
an eigenvector of B with eigenvalue λ.

Note that rb12 = sb21, rb13 = tb31, andsb23 = tb32, then let D be a diagonal
matrix with entries

√
r,
√
s,
√
t. Then, let B′ = DBD−1, which is symmetric

and nonnegative with zero diagonal entries, and furthermore B and B′ share
eigenvalues, with identical sign patterns. These then partition the rows of B′

into singletons, and thus B and A.

3.2 Negative Eigenvalue Partition

For general graphs, Aspvall and Gilbert suggest the following algorithm: re-
peatedly select and eigenvalue and use the sign of its components (let zero be
positive) to refine the coloring so that all vertices with the same signs across
multiple eigenvectors will be in the same color class. Aspvall and Gilbert con-
jecture that this algorithm will find a coloring after only considering negative
eigenvalues. This algorithm does not provide the needed eigenvectors, but they
can be found in polynomial time, unless one of B’s negative eigenvalues has
higher multiplicity as an eigenvalue of A than of B. Otherwise, we need not try
all pairs of eigenvalues. The negative sum of the corresponding eigenvalues is
equal to the spectral radius of A, so we need only try half as many colorings as
there are negative eigenvalues of its adjacency matrix.

Note that the conjecture made has not been proved. This conjecture is
also a critical part of the proof of the Alon-Kahale algorithm. We explore this
conjecture for certain groups of graphs below, namely Cayley graphs for Abelian
groups. These graphs have a strong structure that may make the conjecture
easier to prove. We provide a brief introduction to group theory and Cayley
graphs in Appendix A.
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Theorem 3.4. We can use negative eigenvalues to partition a Cayley graph of
Zn
2 .

Proof. Consider an example of a generating setH = {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.
Then, it is sufficient to prove that for H ⊂ Zn

2 , we have ∀h ∈ H there exists

some w ∈ Zn
2 such that

∑
u∈H(−1)u

Tw < 0, and hTw ≡ 1 mod 2.
In order to prove this, first select some h,w such that hTw ≡ 1 mod 2.

Then, take the space of all u ̸= h, and we find that over this space

E[(−1)u
Tw] = 0,

then, we observe that this implies

E

[∑
u∈H

(−1)u
Tw

]
< 0.

From this we can conclude that such an h,w pair exists.

Theorem 3.5. We can use negative eigenvalues to partition a Cayley graph of
Z⋉.

Proof. Let H be a generator set, so we have {a, b} ∈ E ⇐⇒ b−a ∈ H.Consider
some H ⊂ Zn/{0}. Define our coloring for a with respect to some eigenvector
w as χw(a) = e2πiaw/n. Observe that if e2πiaw/n is an eigenvector, then so
is e2πi(−a)w/n, with the same eigenvalue. This implies that we can take our
generating set to be symmetric, so H = H ∪−H = −H (and thus our graph is
undirected). We want to determine when these eigenvalues are negative. Recall
Euler’s identity eix = cos(x) + i sin(x), and refer to the following figure:

−1

0

1
y sin(x)

cos(x)

Figure 3: Graph of sine and cosine

We say 2πwa/n ∈ [0, π
2 ] means w is ”bad” (highlighted red) as neither cos

or sin are negative here, and otherwise we say w is ”good” (highlighted green).
Then, we know there exists some w ∈ {0, . . . , n − 1} that is ”good”, and by a
similar expectation argument as in 3.4, we can conclude that∑

a∈H

e2πiaw/n < 0
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So our partition is formed by the eigenvalues corresponding by negative
eigenvectors.

3.3 Alon-Kahale Algorithm

Alon and Kahale [AK97] take Aspvall and Gilbert’s idea and expand it to ran-
dom graphs where each vertex in a block has the same expected degree as other
vertices in its block. They prove this for uniform sized blocks, and we show
this result can be expanded to unbalanced classes. We outline their algorithm
below, and outline our proof for non-uniformity.

The Alon-Kahale assumes the graph is random (edges are added between 3
groups of n vertices with uniform probability p, call this G3n,p,3), and implicitly
assumes that color classes are balanced (shown by each color class having n
vertices). The first step is that we remove high degree vertices (with degree
greater than or equal to 5d, where d = np), because we wish to control the
spectrum, in order for proofs about eigenvalue partitions to hold. We make the
following observation, connecting this process to diameter 2 graphs. Empirically,
we notice this algorithm is robust to randomly adding edges until the graph is
diameter 2. The relevance of this model to diameter 2 graphs is outlined by
the following theorem and corollary, which intuitively states that this random
graph will be ”close to” diameter 2.

Theorem 3.6. As n → ∞, G3n,p,3 is diameter 2 with probability 1.

Proof. The odds two vertices do not have a neighbor in a given color class is
(1− p2)n, which goes to 0 as n grows large, for any p. Note that this bound is
loose, and we can converge to 0 more rapidly.

Corollary 3.6.1. Almost all tripartite random graphs have diameter 2, that is
the proportion of tripartite random graphs that are diameter 2 will go to 1 as
n → ∞, for all p.

The algorithm roughly works by (after removing high degree vertices) first
finding a linear combination of the smallest two eigenvalues of the adjacency
matrix with median zero normalized to have ℓ2 norm

√
2n, call this tu. Then, it

partitions vectors to be all vertices by norm after multiplication by tu into three
categories - within

∣∣ 1
2

∣∣ of 0, strictly greater than 1
2 , and strictly less than − 1

2 .
This first stage almost always generates a proper 3 coloring. It then performs
a balancing stage, by recoloring algorithms by the least popular color of its
neighbors. After this stage, it takes all vertices with few neighbors colored
any one color, and attempts to brute force color these final vertices. With
high probability, this produces a proper 3 coloring. Implementation details are
provided in appendix B.1.

Empirical experimentation shows that the relative size of the color classes
are not so important, nor is the exact probability p, although they must both
be so that no one color class is ”too small”, so any failed coloring can usually
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be resolved by keeping the same relative sizes of color classes and probability p,
and increasing n. This is because large imbalance leads to certain thresholds in
the later stages not being met, and the algorithm terminating (even though the
first stage usually produces a very close to correct 3-coloring).

Removing high degree vertices was not quite so easily relaxed, and that
leaving high degree vertices tended to lead to a failure in coloring. This is
because, intuitively, these vertices have more impact on the spectrum, and so
they are ”overrepresented” in the spectrum.

Given an arbitrary random graph with unknown probability p and unknown
color class sizes, by observing the degree distribution we are able to estimate
the expected number of vertices in each color class. This informs balancing in
later stages of the algorithm.

It is possible to have some control the spectrum of the graph, and to attempt
to reduce the degree of high degree vertices. Observe that if we have a triangle
lattice, we can add or remove certain edges from this lattice without affecting
coloring, as some vertices are forced to be different colors by the lattice, and
so an edge between them will have no effect on coloring (even if they are far).
Alternatively, if two vertices are at odd distance from each other along some
cycle with a chord between them, then we can remove the chord and know that
they will still be different colors. This can be done as a preprocessing step to
make a graph more likely to fit the eigenvalue constraints of the algorithm.

We prove an alteration of the proof of stage one of the Alon-Kahale algo-
rithm, with the assumption that we have color classesW1,W2,W3 of size , αn, βn
where 0 < α, β,≤ 1. Add edges with probability p, and let d = pn , and let

a = (1+α+β)
3 be the expected relative size of our classes. Let x = (xv : v ∈ V )

be the vector defined by xv = 2 for v ∈ W1, xv = − 1
α for v ∈ W2, and xv = − 1

β

for v ∈ W3. Then, let y = (yv : v ∈ V ) be the vector defined by yv = 0 is
v ∈ W1, yv = α is v ∈ W2, and yv = −α

β if v ∈ W3. .
First we provide Alon and Kahale’s proposition 2.1:

Theorem 3.7 ([AK97]). Almost surely,

1. λ1 ≥ (1− 2Ω(d))2d,

2. λ3an ≤ λ3an−1 ≤ −(1− 2−Ω(d))d, and

3. |λi| ≤ O(
√
d) 2 ≤ i ≤ 3an− 1

This proposition is utilized below to prove the correctness of the eigenvector
partition, then an modified proof is provided (with some tighter bounds).

First, we prove that almost surely ∥(A+dI)y∥2 = O(nd) and ∥(A+dI)x∥2 =
O(nd).

Note that the expectation of (A+dI)y = 0̂, since each coordinate is the sum
of 3an random variables, call these Pij , where each represents an edge. These
are iid Bernoulli with probability p , with variance p(1−p) = O(d/n). Then, for
each coordinate of (A+ dI)y we have a random variable Ci for each coordinate,
which has mean 0 and variance depending on which set i is in. If i ∈ W1, we
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have variance of Ci equal to αn(d/n)12 + βn(d/n)(−1)2 = (α + β)d, if i ∈ W2

we have variance βd, and else we have variance αd. Since the expectation is 0,
we have that the variance is equal to the square of the coordinate. Then, the
expected value of

∑
C2

i is O((α+β+2αβ)nd). We have that the fourth moment
of each coordinate on W1 is O(d2), so we can use Chebyshev to prove that the
sum of squares on W1 is O((α + β)nd) almost surely, and similarly for W2,W3

and O(βαnd). Then, we have ∥(A+ dI)y∥2 = O((α+ β)nd) almost surely.
Combined with proposition 2.1 we have

∥(A+ dI)y∥2 =

3na∑
i=1

c2i (λi + d)2

≥ Ω(d2)

3na−2∑
i=1

c2i

So we have ∥δ∥2 = O
(

(α+β)n
d

)
.

Then, we have that x− ϵ and y − δ are independent, since if we had µ(x−
ϵ) + ν(y − δ) = 0, we would have µx + νy = µϵ + νδ. We have µn(4 + 1

α2 +

1
β2 ) + νn(α2 + α2

β2 ) = ∥µϵνδ∥2 ≤ |µ|∥ϵ∥+ |ν|∥δ∥ = O((∥µ∥+ ∥ν∥)
√

(α+β)n
d , then

µ(4+ 1
α2 + 1

β2 ) + ν(α2 + α2

β2 ) = O((µ2 + ν2)(α+ β)/d) implying that µ = ν = 0.

Thus, we have
√
3ane3an−1 and

√
3ane3an as linear combinations of x − ϵ

and y − δ.
We can write t as a linear combination of these. We can set t = f + η with

f ∈ F (where F is the set of vectors constant on color classes whose coefficients
sum to 0) and ∥η∥2 = O(n/d). Then, at most O(n/d) coordinates of η are
greater than .01 in absolute value as a result of our bound on the norm of η.
Call the coefficients of f on each color class α1 ≥ α2 ≥ α3. Let α2 correspond
to the largest color class. Since the median of t is 0, we cannot have more than
2n − O(n/d) degrees with the same sign, so |α2| < 1/4. As a result of the
sum of αi = 0 and the squared sum equal to ∥f∥2/n = 2 + O(d−1), we have
that α1 > 3/4 and α3 < −3/4. This implies that the colorings defined by our
eigenvalue partition agree on all except for at most O(n/d) vertices.

We now prove alternative bounds on eigenvalues.

Lemma 3.8 (Alon Kahale Lemma 2.6 modified). There exists a constant γ > 0
such that almost surely the following holds:

1. For any two distinct color classes V1, V2 and any subset X ⊂ V1, Y ⊂ V2

if |X| = 2−γd|V1| and |Y | ≤ 3|X|, then |e(X,V2 − Y )− d|X|| ≤ .001d|X|

2. If J is the set of vertices having more than 1.01d neighbors in G in some
color class, then |J | ≤ 2−γdβn

Proof. Take 2 distinct color classes. First, consider V1 to be our color class if
size αn, and V2 our color class of size βn. Let ϵ = 2−γd. Then, the probability
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that our hypothesis for part 1 holds but the conclusion does not follow is at
most (

αn

ϵn

) 3ϵn∑
i=0

(
βn

i

)
2−Ω(ϵnd)

So considering all
(
3
2

)
= 6 ways to choose color classes (let α or β = 1 to consider

the largest color class) in this way, we can use Chernoff bounds to bound their
sum from above by

2O(max{H(ϵ),αH( ϵ
α ),βH( ϵ

β ,H(3ϵ),αH( 3ϵ
α ),βH( 3ϵ

β )})n2−Ω(ϵnd)

So if we have γ small enough, or αn, βn not too small, this will hold. We
can bound in a similar manner for the second part.

Similarly, Lemma 3.1 uses b sufficiently large and β′ (where β′ is the β used
in Alon and Kahale’s proof) sufficiently small, so this works as well, essentially
as in the original paper.

Lemma 3.9 (Alon Kahale 3.1 modified). There exists a constant γ′ such that,
almost surely, for any subset X of 2−γ′dan vertices, we have e(X,V ) ≤ 5d|X|.

Proof. Considering the proof of the previous lemma, we can bound the ways to
select X by 2−Ω(dϵn) . Then if log( 1ϵ ) < d/b for large enough b (and thus small
enough γ′), this probability will go to 0.

Now, we consider an proof of an altered version of Alon and Kahale’s propo-
sition 2.1. We consider the first bound. Note that the average degree is expected

to be (1 + O(1))2d
(

αβ+α+β
1+α+β

)
instead of (1 + O(1))2d. Then, we know the av-

erage degree influences the first eigenvalue, so in combination with 3.9, we can

bound it as follows: λ1 ≥ (1− 2−Ω(d))2d
(

αβ+α+β
1+α+β

)
.

The second bound is not used in the approximate coloring, so we omit a
modified proof.

We modify the lemmas presented in the Alon Kahale paper to bound the
middle eigenvalues in the following manner:

Instead of creating an n × n matrix B to represent cross class connectivity,
we create matrix block sizes that correspond to edges between classes of size
n, αn, βn, call these blocks Bi. Then, instead of bounding by O(

√
d), we note

that each group of edges between classes has a different average degree. Thus,
we want to prove a bound on O(

√
dmax), where dmax is the largest average

degree, dependent on α, β. In Alon and Kahale’s original paper, this is dmax =
2d = O(d). We can prove Alon and Kahale’s Lemma 3.3 for each block (noting
that each block will have a different constant ci bounding its variance), and
Lemmas 3.4, 3.5 require no modification. Then, we conclude that the maximum
contribution of pairs in C (that is, pairs x, y whose with |xuyv| ≤

√
dmax/n) to

|xTBiy| is O(
√
dmax). The contribution of terms whose absolute values exceed√

dmax/n is bounded as in the original paper.
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Alon and Kahale’s Lemma 3.6 requires a minor modification in the final
equation, by noting that we cannot assume equality across class sizes, and in-
stead must bound the final equation similar to in 3.8. Then, note the constant
used will have a dependency on α, β. From this, we conclude that the contribu-
tion on terms whose absolute value exceeds

√
dmax/n is O(

√
dmax. This implies

Lemma 3.3, implying 3.2. Lemma 3.7 needs no modification, other than noting
that dmax will provide a tighter bound.

Then, by observing that if H is all subspaces of R3an with codimension 1,
we have

λ2 = min
H

max
x∈H,x̸=0

.

Let H have the sum of coordinates 0. Then, as we did earlier, we can write
x ∈ H as f + s with f ∈ F , then we have

xTAx = fTAf + 2sTAf + sTAs

= fTAf + 2sT (A+ dI)f + sTAs

≤ −(1− 2−Ω(d))2d

(
αβ + α+ β

1 + α+ β

)
∥f∥2 + 2∥s∥||(A+ dmaxI)f∥+O(

√
dmax)∥s∥2

≤ O(
√
dmax∥s∥∥f∥) +O(

√
dmax∥s∥2)

≤ O(
√
dmax(∥s2∥+ ∥f2∥)

= O(
√

dmax∥x∥2)

= O(
√
d∥x∥2).

Where we useO(
√
dmax∥x∥2) = O(

√
d∥x∥2) interchangeably for proving bounds,

in particular the latter being easier to utilize in the earlier proof of the correct-
ness of partitioning, but note that for precise calculation accounting for the
sizes of color classes we use the former. Similarly we can bound |λ3n−2|, and
the third bound in 3.7 follows.

We observe that the rebalancing phases will not work as intended with unbal-
anced color classes. Instead, we can approximate the class sizes by observing the
degree distribution, and attempt to rebalance accordingly. Then, in the third
stage, we can identify wrongly colored vertices, and attempt to brute force color
them. We do not provide correctness of these ideas beyond empirical success.

4 Seed-Based Algorithms

Another approach to coloring a graph is by first coloring a subset of vertices
within a graph, and then using this planted coloring to color the rest of the
graph. We call this a seed coloring, where the seed is the planted coloring. If
the neighborhood of our seed is the entire graph, then 3 coloring the seed will
entail that the remainder of the vertices have at most 2 possible colors. This
problem is called LIST-2 coloring, and is solvable in polynomial time. A subset
of vertices such that each vertex in the ambient graph is either in the set or
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neighboring a vertex in the set is called a dominating set, and we observe that
finding and coloring a dominating set in polynomial time implies that we can
color the entire graph in polynomial time.

4.1 Degree Based Coloring

We consider many options for degree based coloring, showing that some work,
and that some do not. We provide a number of observations, parameterized by
restrictions on degree size.

1. Let G be a graph with minimum degree ≥ αn. Let log(n) = αn. Select
vertices with probability p = 2 logn

αn , then the odds that a vertex with αn
neighbors is not covered by this set is

(1− p)αn ≤ e−pαn

= e−2 logn

=
1

n2

Using the union bound, the odds that a vertex is not covered is 1
n .

2. If we can select one vertex of maximum degree c log n, then we can color
this vertex and its neighborhood by brute force (time 3c logn = O(n3c),
then color the remaining neighbors by LIST-2 coloring.

However, we are not guaranteed a vertex with small or large degree. We
show that without a degree bound requirement, we cannot naively brute force
in a similar manner. Select log(n) vertices, call this set S. We can color S using
brute force colorings in time 3logn = O(n). Consider an arbitrary vertex i, and
consider the odds that this vertex or none of its neighbors have been colored,
with the assumption this node has log n neighbors. We are have

(
n

logn

)
total

possible options for S , and
(
n−logn
logn

)
of these will avoid the log n neighbors of our

vertex. Then, we bound the odds that vertex i will not be in N [S] as follows:

P (i /∈ N [S]) ≤
(
n−logn
logn

)(
n

logn

)
=

(n− log n)!2

(n− 2 log n)!n!
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By Stirling

≈

(√
2π(n− log n)

(
n−logn

e

)n−logn
)2

√
2π(n− 2 log n)

(
n−2 logn

e

)n−2 logn

·
√
2πn

(
n
e

)n
≈

(
n−logn

e

)2(n−logn)

(
n−2 logn

e

)n−2 logn (
n
e

)n
≈n→∞

(
n− log n

n

)n

So this bound does not quite work.
A second approximation considers the odds a vertex with log n neighbors has

any of these log n neighbors selected. The odds the first neighbor is not selected

is
(
1− logn

n

)
, and since each neighbor is independent, we have our end result as(

1− logn
n

)logn

. This goes to 1 as n → ∞. So we cannot prove our result with

this method. However, we have parameters. If A = the number of neighbors

that our vertex has, we consider our probability as limn→∞

(
1− logn

n

)A
.

Increasing by a constant factor, if we have log n vertices with degree cn
logn ,

then the odds that any vertex is not colored approaches is
(
1− c

logn

)logn

→ 1
ec

as n grows large. Then, the odds that at least one of our n− log n vertices are
not in a neighborhood is 1− (1− e−c)n−logn, which approaches 1 as n → ∞, so
this does not work either.

Say we, similarly, take f(n) samples of log n nodes with degree n
logn , for

some polynomial f . Then, the odds that all nodes are hit in a sample is(
1−

(
n− n

logn

n

)logn
)n−logn

by a similar calculation as previous paragraphs. Then, the odds that 1 sample
fails is 1 minus this. So the probability that f(n) samples fail is1−

(
1−

(
n− n

logn

n

)logn
)n−logn

f(n)

,

which goes to 1 for polynomial f , and thus we can say with probability 1 all
samples will fail, and we will not obtain a dominating set. This illustrates why
we cannot naively select vertices and find a dominating set in arbitrary graphs.
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4.2 Size of Dominating Set

A natural question is whether we can find a logarithmic size dominating set, or
if our random selection was doomed from the start. If we can do this efficiently,
then we can color the dominating set in polynomial time, and LIST-2 color the
remaining graph in polynomial time. We provide results from Henning and Yeo
[Ha07] that show this cannot, in general, be done for diameter 2 graphs.

Theorem 4.1 (Henning and Yeo [Ha07]). Dominating number of diameter 2

graphs is bounded above by
(

1+ln(δ)
δ

)
n.

Theorem 4.2 (Henning and Yeo [Ha07]). For diameter 2 graphs, if the min
degree is larger than ln(n)

√
n, then the size of the dominating set is bounded by

1 +
√
n.

Proof. Assume n ≥ 3. Then, let our domination number be γt(G). We have by

4.1 abd by noting that 1+ln(n)
n is decreasing in n, that

γt(G) ≤
(
1 + ln(δ)

δ

)
n

≤
(
1 + ln(

√
n ln(n))√

n ln(n)

)
n

=

(
1 + 1

2 ln(n) + ln(ln(n))

ln(n)

)√
n

=

√
n

2
+

1 + ln(ln(n))

ln(n)

√
n

So we show that 1+ln(ln(n))
ln(n)

√
n ≤ 1 +

√
n
2 . This holds for n ≥ 213 as the LHS is

decreasing and less than 1
2 , and computer verification resolves all other cases.

Theorem 4.3 (Henning and Yeo[Ha07]). For diameter 2 graphs, the dominating
set is bounded by 1 +

√
n ln(n), and this bound is tight.

Proof. We set up a similar inequality to 4.2

γt(G) ≤
(
1 + ln(δ)

δ

)
n

≤

(
1 + ln(

√
n ln(n))√

n ln(n)

)
n

=

(
1 + 1

2 ln(n) + ln(ln(n))√
ln(n)

)
√
n

=

√
n ln(n)

2
+

1 + ln(ln(n))

ln(n)

√
n ln(n)
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So we need prove that(
1 + 1

2 ln(ln(n))

ln(n)

√
n ln(n) ≤ 1 +

√
n ln(n)

2

)

Which holds when n ≥ 24, as the LHS is decreasing and less than 1
2 . The

following cases follow from computer verification.

Theorem 4.4 (Henning and Yeo [Ha07]). If the domination number is greater
than 1 +

√
n , then the min. degree is between

√
n and ln(n)

√
n.

Proof. This follow from 4.2 and by noting that if we have minimum degree of
some vertex v less than

√
n, we can take N(v) as a dominating set with size less

than or equal to 1 +
√
n.

Thus, even if min degree is n
lnn , we have the size of the dominating set

bounded by ln2(n), which is too large to brute force color.

4.3 Claw Free Dominating Set

Since we cannot find a dominating set in arbitrary diameter 2 graphs, we inves-
tigate restricted classes of diameter 2 graphs. We overview results provided by
Bouqet et al. in regards to this question , where they prove that if we forbid
certain subgraphs, we can find dominating sets for diameter 2 graphs efficiently.

Definition 25. The claw graph is K1,3.

Definition 26. A vertex v is complete so a set S if it is adjacent to every vertex
in S, and anticomplete if it is adjacent to none of the vertices in S.

Definition 27. A W-join is a pair of disjoint non-empty sets of vertices (A,B)
such that |A|+ |B| > 2, both are cliques, A is neither complete nor anticomplete
to B, and every vertex of V (G)\(A ∪ B) is either complete or anticomplete to
A and complete or anticomplete to B.

Definition 28. Neighborhoods of vertices u, v are distinct if we do not have
N [u] ⊂ N [v], or vice versa. If all such vertices have this property in a graph,
we say the graph has distinct neighborhoods.

Definition 29. A proper circular arc graph is defined by the following charac-
teristics: each vertex corresponds to an arc on a circle, and vertices are adjacent
if their arcs intersect. Furthermore, what makes this graph proper is that no arc
is entirely contained within another.

Theorem 4.5 (Martin et al. [MPvL20]). Every claw free graph with distinct
neighborhoods, maximal independent set number at least 3, and more than 13
vertices is either a proper circular-arc graph or a line graph.

Theorem 4.6 (Bouqet et al. [BDPR24]). Finding a dominating set is polyno-
mial time solvable for line graphs with diameter 2.
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Proof. Bouqet et al. prove that 2K2 free graphs (which have diameter 2 line
graphs) have maximal stable sets that can be enumerated in polynomial time.
Then, as matchings in the original graph correspond to a dominating set in the
dual, the result follows.

Theorem 4.7 (Hsu and Tsai [HT91]). Constructing a dominating set for a
proper circular arc graph can be done in polynomial time.

Proof. First, cut at an arbitrary point to make the circular arc graph an interval
graph. Then, use a sweep algorithm to process arcs, and record all intersections.
Then, run a greedy algorithm that picks an interval covering the leftmost arc
that extends the furthest to the right.

Theorem 4.8 (Bouqet et al. [BDPR24]). Finding a dominating set in claw-free
diameter two graphs is solvable in polynomial time.

Proof. Let G be a claw-free diameter 2 graph. Then, assume the size of the
dominating set is larger than 4, as else we can brute force it in polynomial
time. It follows that G has no W−join, and since the dominating set size is
less than or equal to the maximal independent set size, the size of the maximal
independent set is at least 3. We can also assume that |V | > 13, as else we can
find a dominating set in constant time.

Next, assume that there is a pair of adjacent vertices u, v such that the
neighborhood of u without v is a subset of the neighborhood of v without u.
Then, for ever dominating setD of G−u, we have N(u)∩D ̸= ∅, so a dominating
set of G−u also dominates G. Also, removing u does not increase the diameter.
Thus, we can search for all such pair u, v and remove them from G in polynomial
time.

Thus, we can apply 4.5. If G is a line graph (which can be checked in
polynomial time) we use 4.6, else we use 4.7.

Definition 30. A vertex Cover of a graph is a subset of vertices such that each
edge has at least one endpoint in this subset. Finding such a cover is known to
be NP−complete for arbitrary graphs.

Theorem 4.9 (Bouqet et al [BDPR24]). Finding a dominating set is NP -
Complete for K1,4 free graphs with diameter 2.

Proof. This follows from a polynomial time reduction from vertex cover. From
I = (G = (V,E), k) an instance of Vertex Cover, we build an instance I ′ =
(G′, γ) where G′ is K1,4-free with diameter 2 and γ = k.

We start by constructing G′ = (V ′, E′). The vertices of V ′ are partitioned
into V1, E1, E2, S, s. We define these sets and the edges of G′ as follows:

• For each vertex v ∈ V , there is a vertex v1 ∈ V1, that is, V1 = v1 | v ∈ V ;

• For each edge uv ∈ E, there is a vertex e1uv ∈ E1 and e2uv ∈ E2, that is,
E1 = e1uv | uv ∈ E and E2 = e2uv | uv ∈ E;
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• For each u1 ∈ V1, the vertices u1 ∪ e1uv | u = u1 and u1 ∪ e2uv | u = u1 form
two cliques;

• V1 ∪ S ∪ s is a clique;

• For each pair e, e′ ∈ E1 ∪ E2 such that N(e) ∩ N(e′) ∩ V1 = ∅, there is
a vertex se,e′ ∈ S and the two edges se,e′e, se,e′e

′ ∈ E′. Note that these
edges e, e′ correspond to copies of non-incident edges in G.

Since V1 ∪S ∪ s is a clique and that every pair of vertices e, e′ ∈ E1 ∪E2 has
a common neighbor in V1 ∪S, it follows that diam(G′) = 2. We show that G′ is
K1,4-free. For each vertex of G′, we give a partition of its neighborhood into at
most three cliques. For u1 ∈ V1: N(u1)∩E1, N(u1)∩E2, and N(u1)∩(S∪V1∪s).
For eiuv ∈ Ei, i ∈ 1, 2: N(eiuv) ∩ N(u1), N(eiuv) ∩ N(v1), and N(euv) ∩ S. For
se,e′ ∈ S: se,e′ , e, se,e′ , e

′, and V1 ∪ S ∪ s. For the vertex s: N(s) = S ∪ V1.
Therefore G′ is K1,4-free.

Let C, |C| ≤ k = γ, be a vertex cover of G. Then its copy in V1 is a
dominating set of G′ of size at most γ.

Let I ′ = (G′, γ) be a positive instance, so there exists Γ, |Γ| ≤ γ a dominating
set of G′. From Γ we will construct a dominating set Γ′ such that Γ′ ⊆ V1. Since
N(s) = V1 ∪ S we can assume that s /∈ Γ. Let Si be the vertices of S with two
neighbors in Ei, that is, Si = se,e′ | e, e′ ∈ Ei, i = 1, 2. Let Γi = Γ ∩ (Ei ∪ Si).
Without loss of generality |Γ1| ≤ |Γ2|. Let Γ′ = Γ\Γ2. For each e1 ∈ Γ1, we add
e2 to Γ′, and for each se1,e′1 ∈ Γ1, we add se2,e′2 to Γ′. Since G′[E1 ∪S1 ∪ V1] is
isomorphic to G′[E2 ∪ S2 ∪ V1], it follows that Γ

′ is a dominating set of G′ such
that |Γ′| ≤ γ.

Let E0
i be the vertices eiuv ∈ Ei such that Γ′ ∩ N(eiuv) ∩ V1 = ∅, i = 1, 2.

For each e1uv ∈ E0
1 , there is e2uv ∈ E0

2 , and vice versa, because N(e1uv) ∩ V1 =
N(e2uv) ∩ V1. Since N(e1uv) ∩ N(e2uv) ∩ S = se,e′ , with e = e1uv, e

′ = e2uv, and
that each vertex of S has exactly two neighbors in E1 ∪ E2, it follows that
|E0

1 | ≤ |S ∩ Γ′|. Then we remove the vertices of S from Γ′ and we replace them
by u1 ∈ V1 for each e1uv ∈ E0

1 . It follows that Γ
′ is a dominating set of G′ such

that |Γ′| ≤ γ. Note that Γ′ ⊆ V1.
Let C be the copies of the vertices of Γ′ ∩ V1 in G. Since each vertex

e1uv ∈ E1 has a neighbor in Γ′ ∩ V1, it follows that C is a vertex cover of G such
that |C| ≤ k.

Definition 31. A split graph S is a graph whose vertices can be partitioned into
S = (K, I), where K is a clique and I is an independent set.

Theorem 4.10. Given a split graph, we can find the split in polynomial time.

Proof. First, we sort all vertices by degree. Find the largest k for which we have
k vertices of degree k − 1 or larger. Consider all vertices with degree exactly
k − 1. Then, these vertices must be connected to all vertices in the k clique,
and we can pick any to be in the clique.

Definition 32. A vertex v is called simplicial when N(v) is a clique.
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Lemma 4.11 (Bouqet et al. [BDPR24]). If u, v are vertices of a graph such
that N(u) ⊂ N(v), and v is simplicial, then the dominating set of G is not
affected by the removal of v.

Proof. For any graph containing a simplicial vertex, there is a dominating set
that does not contain this vertex. Let S be such a set that does not contain v.
Then S is a dominating set of G− v. Then, it follows that u is simplicial, and
that uv /∈ E. Thus, there is a set |S′| that dominates and does not contain u,
with |S| = |S′|.

Theorem 4.12 (Bouqet et al. [BDPR24]). Finding a dominating set is NP -
complete for triangle-free graphs with diameter 2.

Proof. We give a polynomial transformation from Dominating Set, which is NP-
complete for split graphs with diameter 2 (see [9]). From I = (G, k) an instance
of Dominating Set, we build an instance I ′ = (G′, k′).

In I = (G, k), G = (K ∪ S,E) is a split graph with diameter 2 where K
is a clique and S is a stable set. Let u, v ∈ S. First, since the vertices of S
are simplicial, it follows from 4.11 that we can suppose that N(u)N(v) and
N(v)N(u). Second, since diam(G) = 2, there exists w ∈ K such that u−w− v
is a path in G.

From G we build G′ = (V ′, E′) as follows. We take a copy K1 of K and
two copies S1, S2 of S. For the sake of simplicity, for v ∈ K, its copy in K1 is
denoted by v1, whereas for v ∈ S, its copies in S1, S2 are denoted by v1, v2,
respectively. We then add two vertices t and s. For each pair u ∈ K, v ∈ S, if
uv ∈ E, then we add the edge u1v1; otherwise, we add the edge u1v2. For every
v ∈ S, we add the edge v1v2. Then we make t complete to K1 and s complete
to S2. Last, we add the edge st. Note that t,K1, s, S1, S2 is a partition of G′

into stable sets. Finally, we take k′ = k + 1.
We show that G′ is triangle-free. Since N(t) = K1 ∪ s and N(s) = S2 ∪ t

are two stable sets, it follows that t and s cannot be in a triangle. Thus, if a
triangle exists, it has one vertex u1 ∈ K1, one vertex in S1, and one vertex in
S2. So this triangle contains the edge v1v2. But when u1v1 is an edge, u1v2 is
not an edge, and vice versa. So G′ is triangle-free.

We show that diam(G′) = 2. We observe that t and s are at distance at
most two from any vertex of the graph. So we can focus on the vertices of
K1 ∪ S1 ∪ S2. Since t is complete to K1 and s is complete to S2, for any
pair v1, u1 ∈ K1 (respectively v2, u2 ∈ S2), there exists the path v1 − t − u1

(respectively v2 − s− u2).
Since diam(G) = 2, for any pair v1, u1 ∈ S1, there exists w1 ∈ K1 such that

v1 − w1 − u1 is a path of G′. Now let u1 ∈ S1, v1 ∈ K1 (respectively u2 ∈ S2,
v1 ∈ K1), such that uv /∈ E (respectively uv ∈ E). Then u2v1 ∈ E′ (respectively
u1v1 ∈ E′), so u1 − u2 − v1 (respectively u2 − u1 − v1) is a path of G′. Now
let u1 ∈ S1, v2 ∈ S2, u ̸= v. From Lemma 4.1, we can assume that there exists
w ∈ N(u), w /∈ N(v). Therefore u1w1, v2w1 ∈ E′, and u1 −w1 − v2 is a path in
G′. So diam(G′) = 2.
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Let D be a dominating set of G with |D| ≤ k. Let D′ be the set of the
copies of the vertices of D in K1 ∪ S1. Then D′ ∪ t is a dominating set of G′

and |D′ ∪ t| ≤ k + 1 = k′.
Conversely, let D′ be a dominating set of G′ with |D′| ≤ k′ = k + 1. Since

N(s) = S2 ∪ t, it follows that |D′ ∩ (t, s ∪ S2)| ≥ 1.
First, suppose S2 ∩D′ = ∅. So |D′ ∩ t, s| ≥ 1. For each v1 ∈ D′ ∩ S1, if any,

let a unique u1 ∈ N(v1) ∩K1. Then let
Second, if |S2 ∩D′| ≥ 1 and t ∈ D′, then for each v2 ∈ D′ ∩ S2, let a unique

u1 ∈ N(v1) ∩K1 (where v1 is the neighbor of v2 in S1). Then let
Third, if |S2 ∩ D′| ≥ 1 and t /∈ D′, then for each v1 ∈ S1 which is not

dominated by a vertex of K1 or by itself, we have that v1 is dominated by v2,
its neighbor in S2. Let any w ∈ N(v1) ∩K1. Since t /∈ D′, we have that w is
dominated either by u1 ∈ N(w) ∩ S1, u1 ̸= v1, or by u2 ∈ S2, u2 ̸= v2. In the
first case, we replace u1 by w in D′, in the second case we replace u2 by w in
D′. Then we take D̄ = D′ ∩ (K1 ∪ S1).

In all cases, we take D to be the copies of the vertices of D̄ in G. We have
that D is a dominating set of G with |D| ≤ k.

5 Families of Diameter 2 Graphs

Another perspective on coloring is investigating the family of all diameter 2
graphs. If we can identify certain structures, such as a finite family of forbid-
den subgraphs that force a 3 coloring to not be possible, then we can use this
to inform coloring algorithms. We explore results related to counting various
families of graphs, then construct an example to show that there is not a finite
family of forbidden subgraphs for diameter 2 graphs.

5.1 Well Quasi Ordering

A well quasi ordering is a relation defined on an infinite set that informs us on
certain structural properties of the set. We are interested in when diameter 2
graphs are well quasi ordered, as this institutes some structure to the family of
all diameter 2 graphs.

Definition 33. A well-quasi-order on a set S is a preorder (P, ≤), such that
for any infinite sequence {xi}i∈I ⊂ S, there exists some i < j with xi ≤ xj.

Alternatively, this is expressed by satisfying two conditions. First, there
must be no infinite antichains (set in which no two elements are comparable), so
for any infinite sequence in P, there is some pair of elements that are comparable.
Second, there must be no strictly decreasing infinite sequence in P.

Definition 34. A minor H of a graph G is H can be formed from G by deleting
vertices, edges, and by contracting edges.

Theorem 5.1 (Robertson and Seymour [RS04]). Undirected graphs are well
quasi ordered by the minor relation.
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Definition 35. A cograph is a graph which does not contain P4 as an induced
subgraph.

Theorem 5.2 (Damaschke [Dam90]). Cographs are well-quasi ordered under
the subgraph relation.

Theorem 5.3. The family of claw-free and C5 free diameter 2 graphs are well-
quasi ordered.

Proof. If a diameter 2 graph has an induced path P4 = v1v2v3v4, then we know
there must be edges v1v5, v4v5 ∈ E in order for d(v1, v4) ≤ 2 to hold. Then,
we could still have this graph not be a cograph if v2v5 or v3v5 ∈ E, as either
would imply that v1v2v3v4v5v1 is not an induced 5 cycle. Forbidding claws and
5 cycles thus ensures that we cannot have P4 as a subgraph. Then, all remaining
graphs are cographs, and so the remaining family is a collection of cographs,
and thus is well-quasi ordered.

5.2 Strongly Regular Graphs

Strongly regular graphs are a family of graphs with strong structural properties,
that are guaranteed to be diameter 2 if given certain parameters. Similar to
how Alon and Kahale generalized coloring random graphs from coloring regular
graphs, it is possible to generalize coloring random graphs from coloring strongly
regular graphs. In this subsection we provide an overview of results relating to
coloring strongly regular graphs.

Definition 36. We call a graph G strongly regular of degree k if it can be
described as (n, d, p, q), where every pair of adjacent neighbors have p neighbors
in common, and every nonadjacent pair has q neighbors in common. Such a
graph is primitive if both itself and its complement are connected. Note that
these graphs are diameter 2 (and distance regular) if q > 0.

Lemma 5.4 (Haemers [Hae79]). Let fn be the multiplicity of λn. Then,

γ(G) ≥ max{1 + fn, 1−
λn

λ2
}

Proof. Let γ ≤ fn. Then, λn = λn−γ+1. By observing that

(γ − 1)λk+1 ≥ −λn−k(γ−1)

the result follows, with k = 1.

Lemma 5.5 (Haemers [Hae79]). If G is primitive and strongly regular, and not
the pentagon or the complete γ−bipartite graph, then

1. d ≤ −λn(γ(G)− 1)

2. −λn ≤ λ2(γ(G)− 1)

3. λ2 ≤ γ(G)− 1
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Proof. First, we prove that γ(G) ≥ max{1 − λ1

λn
, 1 − λn

λ2
}. If n ≤ 28, we verify

this by computer checking. If λ2 < 2, then either it is equal to 1, or G is the
conference graph (and thus n<25). Else, strongly regular graphs with λ2 = 1
were proven by Seidel [Sei75] to satisfy n ≤ 28, be a ladder, complement of a
lattice, of complement of a triangular graph, all of which satisfy the bound on
γ(G). Finally, let λ2 ≥ 2. If G is imprimitive, the result follows, so assume G
is primitive. Then, if the result did not hold, we have λ1 < n, and fnλn + (n−
1− fnλ2 + λ1 = 0 implies

f2
n < −fnλn

λ)2

= n− 1− fn +
λ1

λ2

<
3

2
n− fn

So f2
n+3fn < 3

2n+2
√

3
2n, thus n < 24, we have a contradiction, and our bound

on γ(G) follows.
Then, we can deduce (1) and (2).
Since G is primitive, 0 < q = d−λ2λn, so by (1) we have γ(G)−1 ≥ − d

λn
>

λ2.

Lemma 5.6 (Haemers [Hae79]). For a strongly regular graph G, we have q−d =
λ2λn

Theorem 5.7 (Haemers [Hae79]). For any n ∈ N, the number of primitive
strongly regular graphs with chromatic number n is finite.

Proof. If G is primitive, then q ≥ 1, and so by 5.5

n ≤ nq = (d− λ2)(d− λn) ≤ d(d− λn) ≤ d(d− λn) < γ(γ − 1)5.

5.3 Moore Graphs

We provide a well known result about Moore Graphs, from Hoffman and Sin-
gleton. This shows the relation between diameter, girth, and degree, as well as
an example on observing that certain families of graphs are finite, if a strong
enough restriction is imposed.

Definition 37. The girth of a graph is the length of its smallest subgraph that
is a cycle.

Lemma 5.8. A diameter 2 graph cannot have girth 6 or larger.

Proof. Say a diameter 2 graph has girth 6, and find the smallest cycle. Then,
consider antipodal vertices. These vertices must be at most two two steps away,
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else our graph is diameter 2. If they share an edge, we have found a C4, if they
share a common neighbor we have found a C5, either way, the assumption on
the graph having girth 6 is contradicted. Similar arguments can be made for
larger girth graphs.

Theorem 5.9. A diameter 2 graph with maximum degree ∆ cannot have more
than 1 + ∆2 vertices. This bound is called the Moore bound.

Proof. Find the maximal degree vertex v, then it has ∆ neighbors. Furthermore,
each of its neighbors can have at most ∆ neighbors, yielding at most ∆2 vertices
in N [N(v)]. Then, we have ∆2 + 1 vertices in N [N [v]] = G.

Theorem 5.10 (Hoffman and Singleton [HS60]). Every graph with diameter 2
and achieves the Moore bound is girth 5 is called a Moore graph, it is k-regular
with k2 +1 vertices, with k ∈ {2, 3, 7, 57}. Furthermore, the existence of k = 57
is a mystery.

5.4 Mycielskian

The Mycielskian is a construction that preserves many structural properties of
a graph, notably diameter, while not preserving others, notable k−colorability.
Systematic constructions with provable properties can be a useful tool for con-
sidering large families of graphs. In this subsection, we explore and prove certain
properties relating to the Mycielskian.

Definition 38. The Mycielskian M(G) of a graph G is a construction obtained
by adding n+1 vertices such that, if the original vertices are v1, . . . , vn, we have
for each edge vivj new edges uivj and ujvi. Call u1 . . . , un auxiliary vertices.
Finally, connect the n+1th new vertex to all auxiliary vertices.

As an example, we show the Mycielskian of C4.

Theorem 5.11. If G is diameter 2, then M(G) is as well.

Proof. Consider all vertices in G ≤ M(G). Then, these can reach all vertices
in G in 2 steps by assumption, and all new auxiliary vertices by either directly
traveling to it or by traveling through a common vertex. Furthermore, they can
reach the final new vertex by traveling through any auxiliary vertices. The new
vertices form a star, so they can all reach each other as well.

Theorem 5.12. The Mycielskian construction increases the chromatic number.

Proof. Color G ≤ M(G) as you normally would. Then, we must use all of the
colors in the auxiliary vertices, and the final new vertex increases the chromatic
number by 1.

Theorem 5.13 (Mycielski [Myc55]). The Mycielskian construction does not
increase the clique number of the graph.
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Figure 4: Mycielskian of C4

Proof. The only new triangles must be of the form vivjuk, where vivjvk is a
triangle in G.

Lemma 5.14. If G ⊂ G′, then M(G) ⊂ M(G′).

Proof. This follows from the construction of M(G).

5.5 Ci and Pj Freeness

Coloring diameter 2 graphs without certain subgraphs, such as small cycles or
paths, is an avenue that has shown promise. Results for polynomial time 3
colorings for some such families has been proven, and is likely to be possible for
further families.

We consider an induced path Pj to be a path such that no vertices in the
path share an edge with other vertices in the path that they are not adjacent
to with respect to the path. Likewise, in an induced cycle Ci we cannot have
any chords, or edges between vertices that are not adjacent with respect to the
cycle. A Pj free graph is a graph that does not include any induced Pj . To gain
understanding of this, note that a P2 free diameter two graph must be Kn for
some n, since the P2 free condition forbids vertices sharing a neighbor without
sharing an edge, however all vertices must share a neighbor or share an edge,
and thus all vertices share an edge.

Polynomial time colorings is open for Pt free graphs when t ≥ 8. For t ≥ 2,
we have that Pt free graphs are a subclass of C<t free graphs (both due to Matin
et al). Rojas and Stein prove polynomial time coloring is possible for diameter 2
graphs. It is also polynomial time solvable for the following diameter 2 graphs:

• (Codd
<t−3, Pt) free [Rojas and Stein [RS20]]
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• (C3, C4)-free [Martin et al. [MPS19]]

• K2,1,r-free for every r ≥ 1 [Martin et al. [MPS19]]

• S1,2,2-free [Martin et al. [MPS19]]

• C5 free [Martin et al. [MPS21]]

• C6 free [Martin et al. [MPS21]]

• (C4, Ct) free for t ∈ {3, 5, 6, 7, 8, 9} [Martin et al. [MPS21]]

• (C4, Ct) free for t ≥ 10 [Klimosova and Sahlot [KS23]]

Note that (C3, Cs) with s ≥ 8 remains open. Proving polynomial time coloring
for diameter 2 graphs without small cycles generally works as follows:

1. Assert the existence of some cycle that is not forbidden

2. Color this cycle

3. Safely reduce the possible colors for the remainder of the graph, starting
with its direct neighbors

4. Make observations about graph structure; construct more safe coloring
rules

5. Conclude that the remainder of the graph must be easy to color

We investigate coloring a (C3, C8) free graph G using this method. Then,
we can find an induced C7, as otherwise the graph would be C3, C7 free, and
coloring it could be done in polynomial time. While we do not complete this
proof, we provide useful observations that can guide next steps.

We have three cases for coloring this graph up to permutation. Without a
loss of generality, let us color the first vertex a. Then, if there is only one vertex
colored a, then there is one possible coloring - alternating b and c. If there are
two vertices colored a, we have two possibilities up to permutation - either the
third vertex is also colored a, or the fourth is. We examine each of the three
cases below. Let L(v) ⊂ {a, b, c} be the set of colors that v could be. In each

case, we consider N1 = {v ∈ N(C7)
∣∣∣|L(v)| ≤ 2}, L3 = {v ∈ N(N1)

∣∣∣|L(v)| = 3},
so N1 are all neighbors of the cycle with list 2 colors, and L3 are all neighbors
of neighbors of the cycle with list 3 colors.

We can apply propogation rules as described by [MPS19], [KS23]. These
rules will reduce the size of L(v) for certain vertices, getting us closed to an
instance of LIST-2 coloring. Our goal to reduce the size of L3 to less than
log(n), or otherwise make it easy to color.

We refer to Ai, Bi, Ci ⊂ N1 where the subscript is a string that denotes which
vertices in our C7 they are connected to, so for example A1 is connected to vertex
1 in the cycle, and C357 is connected to vertices 3, 5, 7. We have A = ∪i∈IAi,
and similar for B,C. All Ai, Bi, Ci are independent sets (by the triangle free
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constraint). Furthermore, there are no edges between Ai, Aj i ∩ j ̸= ∅ by the
same constraint. We also have that each Ai is not connected to any 1-colored
vertex that is not colored a, similar for Bi, Ci. Generally, if two vertices share
a neighbor, they cannot be connected (triangle free).

If we can prove that L3 has a dominating set of size log(n), then we can
brute force color this in linear time, and can 3 color each coloring instance in
polynomial time.

Observe that If Ai, Aj has |i| = |j| = 1, and |i− j| = 2, then Ai, Aj do not
share edges by the C8 free constraint. Similar for B, C. We provide observations
for the three possible cases of an initial coloring of C7.

1. One vertex colored a
Let C7 = (1, 2, 3, 4, 5, 6, 7, 1), and let c(1) = a, c(2) = b, c(3) = c, c(4) =
b, c(5) = c, c(6) = b, c(7) = c.

(a) We know the following:

i. B4 = ∅
ii. C5 = ∅

(b) There are no edges between:

i. A,C3x

ii. A1, B6

iii. B2, B4

iv. C5, C7

(c) All vertices in L3 must connect to A1 = A.

(d) No vertices connect to C57, C5, B4, B24

(e) Each vertex has at most one neighbor in B26, C57.

(f) Let av ∈ E. If vv′ ∈ E and v′c35 ∈ E, then c35a ∈ E

2. Two vertices colored a, with two vertices between them.
Let C7 = (1, 2, 3, 4, 5, 6, 7, 1), and let c(1) = a, c(2) = b, c(3) = a, c(4) =
b, c(5) = c, c(6) = b, c(7) = c.

(a) All vertices in L3 have at most one edge in each of B24, B46, A13, C57.

3. Two vertices colored a, with three vertices between them.

Let C7 = (1, 2, 3, 4, 5, 6, 7, 1), and let c(1) = a, c(2) = b, c(3) = c, c(4) =
a, c(5) = b, c(6) = c, c(7) = b. We have the following observations, noting
the symmetry between A and C:

(a) Each vertex in A has an edge to a vertex in C, and vice versa.

(b) Each vertex in L3 cannot have an edge in both A1 and A4, so it must
have at least one in A14.

(c) Each vertex in L3 cannot have an edge in both C3 and C6, so it must
have at least one in C36.
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(d) Each induced P2 = vv′v′′ ⊂ L3 completes a C4, with v, v′′ sharing
a neighbor in A14 or C36 (by C8 free requirement combined with
triangle free).

(e) Whichever neighbor v, v′′ share in A14 or C36 cannot have an edge
shared with neighbors of any other neighbors of v, v′′.

(f) If (a, c) ∈ E, we cannot have a P2 with (v, a) or (v′′, c).

(g) There are
∑

v∈L3

(
deg(v)

2

)
P2s in L3.

Ideally, this can help us institute a relation between the number of edges
in L3, and how difficult L3 is to color.

We hope these observations can inform future consideration of this problem,
whether by the author or others.

5.6 Counting Forbidden Subgraphs

In this section, we prove that there is not a finite family of forbidden subgraphs.
In doing this, we provide an example of a graph that resists the coloring tech-
niques we mentioned earlier, despite seeming to be a prime candidate for spectral
algorithms.

Theorem 5.15 (Pan, Stefankovic). There is an infinite family of forbidden
diameter two subgraphs that force a 4 or higher chromatic number.

Proof. Consider a diameter 2 graph G with 3k vertices. Let V = {{0, 1, 2}k},
and let our edge set satisfy E = {{a, b}

∣∣ ∀i ai ̸= bi}. This graph is 3 colorable
and diameter 2 with 3k colorings. To see that G satisfies the diameter 2 con-
straint, consider two vertices without an edge u, v. Then, they differ by at least
one coordinate, however there is at least one third node w that differs from all
coordinates from both nodes, so there is an edge between u,w and w, v. To find
a coloring, partition all vertices by their ith coordinate, then each set will be
independent. Next we generate forbidden subgraphs. We add k edges between
vertices sharing ai, bi, and the ith edge removes the ith coloring. Each edge
addition creates a graph that is not a subgraph of prior graphs, and we can do
this for any k, creating an arbitrarily large family.

Coloring our original graph with no additional edges added resists spectral
methods and seed based coloring.However, we provide a combinatorial argument
to find the original structure.

Given an arbitrary graph that has been formed in the above manner, we can
efficiently recover the original graph with the following algorithm. We use the
terms string and vertex interchangeably. Say we have 3k vertices. First, pick
and arbitrary triangle. Set the vertices to be 0̄, 1̄, 2̄. Observe that N(0̄) is all
strings in {1, 2}k, and we find other neighborhoods similarly.

Next, pick an arbitrary string s in N(0̄), and note that we can deduce the
number of 1s and 2s it contains by counting the number of edges it shares with
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1 2

{1, 2}∗

{0, 2}∗ {0, 1}∗

Figure 5: Initial Declaration as a subset of our graph

N(1̄), N(2̄).Note that all vertices in N(1̄) sharing an edge with s have a 0 where
s has a 2. Then, each digit that is a 1 in s can be either a 0 or 2 in a vertex
in N(1̄) that shares an edge with s. From this, we can conclude that if s has 2l

edges with N(1̄), then s has l digits that are 1, and n− 1 digits that are 2.
Find all vertices in N(0̄) and N(2̄) that have exactly one digit that is a 1.

Fix some vertex v in N(0̄) that satisfies this condition. Note that there will be
exactly one vertex u ∈ N(2̄) with only one 1 that does not share an edge with
v. Without a loss of generality, designate that both of these vertices have a 1 in
their first digit. Refer to 6. We can do this since the order of the digits does not
matter, only if strings are equal or are not equal with respect to a particular
digit matters. Continue this process for all pairs of vertices that have exactly
one of some number in their string representation. Using this method, we can
identify all strings with a number that appears in exactly one digit. Consider
that we have found all strings {1000̄, 0100̄, 0010̄, . . . }. From this, we can find
the string 1100̄. Observe that it is the only string in N(2̄) with two 1s that does
not share an edge with 1000̄ . . . or 0100̄ . . . . We can similarly identify all strings
in N(0̄), N(1̄), N(2̄). Then, we can deduce the remaining graph, and color it as
described in the proof of 5.15.

We also conjecture a spectral algorithm that works for certain eigenbases,
namely up to permutation of the standard eigenbasis formed from ordering
the strings in ascending order with respect to ternary representation before
calculating eigenspaces. This has empirical correctness, although we do not
provide a proof. The algorithm is described below:

1. Find eigenvectors e3k , e3k−1 with respect to the smallest eigenvalue (−1)2k−1.
Observe that these are in {−1, 0, 1}∗.

2. Select two such eigenvectors that do not have any -1s in the same digit.
Then, if the vth digit of e3k is -1, color v red. Similarly, color digits of
e3k−1 with value −1 blue. This will give 2/3 of class red, blue.
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(1, 2, 2, 2) (1, 0, 0, 0)

Figure 6: Selecting an ordering of digits

3. Use the adjacency matrix to find vertices that have both red vertices and
yellow vertices as neighbors, color these yellow

4. Observe that we are left with an instance of LIST-2 coloring.

Note that neither of these algorithms are robust to adding edges. This
provides examples of hard diameter 2 graphs that resist our algorithms, and we
leave coloring algorithms for these graphs as an open problem for future works.

6 Conclusion

We investigate coloring of diameter 2 graphs and related interesting results via
spectral and combinatorial approaches. We provide results relating to spectral
partitioning, seed coloring, and graph construction, and outline existing results
relating to spectral theory, Hamiltonian cycles in line graphs, dominating sets,
and families of diameter 2 graphs.

As open problems, we leave Aspvall and Gilbert’s conjecture on partitioning
negative eigenvalues as an interesting direction. Proving it for all Cayley graphs
of Abelian groups would be a nice stepping stone. We also leave (C3, Ct) freeness
for t ≥ 8, and hope that our observations are insightful. Finally, we leave
coloring our difficult example from the final section as a problem that can guide
robust spectral coloring algorithms.
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Stéphane Rovedakis. On the complexity of dominating set for graphs
with fixed diameter. Theoretical Computer Science, 956:114561,
2024.
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A Group Theory

A.1 Groups

Definition 39. A group is a set G equipped with a binary operation · (often
written as multiplication or addition) satisfying the following:

• Closure: For all a, b ∈ G, the result a · b ∈ G.

• Associativity: For all a, b, c ∈ G, (a · b) · c = a · (b · c).

• Identity: There exists an element e ∈ G such that for all a ∈ G, e · a =
a · e = a.

• Inverses: For all a ∈ G, there exists a−1 ∈ G such that a·a−1 = a−1 ·a =
e.

Definition 40. A subset S ⊆ G is called a generating set if every element of
G can be written as a product of elements from S and their inverses.

A.2 Cayley Graph

Given a finite group G and a subset S ⊆ G that generates G, we have the Cayley
graph Cay(G,S) is a graph defined as follows:

• Each group element g ∈ G is a vertex.

• For each g ∈ G and each s ∈ S, draw a directed edge from g to g · s.

• If S is symmetric (i.e., s ∈ S ⇒ s−1 ∈ S), the graph can be considered
undirected.

We provide an example, the Cayley Graph of Z4

LetG = Z4 = {0, 1, 2, 3}, the integers modulo 4 under addition. Let S = {1},
which generates G. We have vertices as {0, 1, 2, 3} = G, and edges defined as
follows: for each g ∈ Z4, add a directed edge from g to g+1 mod 4. This gives
a directed cycle on 4 vertices.

39
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Figure 7: Cayley Graph for Z4 generated by {1}

B Code

We include code for various algorithms discussed in the body of the paper. Note
that various helper functions are omitted.

B.1 Alon Kahale Algorithm

1 import org.apache.commons.math3.linear.EigenDecomposition;
2 import org.apache.commons.math3.linear.RealVector;
3

4 import java.util .*;
5

6 public static int [][] preprocessMat(int [][] matrix , double
threshold) {

7 int n = matrix.length;
8 List <Integer > toRemove = new ArrayList <>();
9

10 // Identify rows (and corresponding columns) to be
removed

11 for (int i = 0; i < n; i++) {
12 int count = 0;
13 for (int j = 0; j < n; j++) {
14 if (matrix[i][j] > 0) {
15 count ++;
16 }
17 }
18 if (count > threshold) {
19 System.out.println("Vertex " + i + " slated for

removal");
20 toRemove.add(i);
21 }
22 }
23
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24 // Create a new matrix with the filtered rows and
columns

25 int newSize = n - toRemove.size();
26 int [][] newMatrix = new int[newSize ][ newSize ];
27 int newRow = 0;
28

29 for (int i = 0; i < n; i++) {
30 if (toRemove.contains(i)) continue;
31 int newCol = 0;
32 for (int j = 0; j < n; j++) {
33 if (toRemove.contains(j)) continue;
34 newMatrix[newRow ][ newCol] = matrix[i][j];
35 newCol ++;
36 }
37 newRow ++;
38 }
39

40 return newMatrix;
41 }
42

43

44 public static RealVector get_t(RealVector e3n_1 , RealVector
e3n , int n) {

45 RealVector t = e3n_1; // Start with e 3 n 1
46 double alpha = 1.0, beta = 1.0; // Coefficients for

linear combination
47

48 while (true) {
49 t = e3n_1.mapMultiply(alpha).add(e3n.mapMultiply(

beta));
50

51 double [] components = t.toArray ();
52 java.util.Arrays.sort(components);
53 double median = components[n / 2];
54

55 if (Math.abs(median - 0.0) < 1e-4) break;
56 if (median > 0) {
57 beta -= 0.01;
58 } else {
59 alpha -= 0.01;
60 }
61 }
62 t = t.mapDivide(t.getNorm ()).mapMultiply(Math.sqrt((

double) (2 * e3n.getDimension ()) / 3));
63 return t;
64 }
65

66

67

68 public static Partition phase1(RealVector t) {
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69 Partition partition = new Partition ();
70

71 for (int i = 0; i < t.getDimension (); i++) {
72 double value = t.getEntry(i);
73

74 if (value > 0.5) {
75 partition.V1.add(i);
76 } else if (value < -0.5) {
77 partition.V2.add(i);
78 } else {
79 partition.V3.add(i);
80 }
81 }
82 return partition;
83 }
84

85 public static Partition phase2(int [][] matrix , Partition
partition) {

86 List <Partition > partitions = new ArrayList <>();
87 partitions.add(partition); // Vˆ0_1, Vˆ0_2, Vˆ0_3
88

89 for (int i = 1; i < Math.ceil(Math.log(matrix.length));
i++) {

90 Partition prevPartition = partitions.get(i - 1);
91 Partition currentPartition = new Partition ();
92 for (int v = 0; v < matrix.length; v++) {
93 int countV1 = countNeighborsInSet(matrix , v,

prevPartition.V1);
94 int countV2 = countNeighborsInSet(matrix , v,

prevPartition.V2);
95 int countV3 = countNeighborsInSet(matrix , v,

prevPartition.V3);
96 // Find the least popular color class
97 if (countV1 < countV2 && countV1 < countV3) {
98 currentPartition.V1.add(v);
99 } else if (countV2 < countV1 && countV2 <

countV3) {
100 currentPartition.V2.add(v);
101 } else if (countV3 < countV1 && countV3 <

countV2) {
102 currentPartition.V3.add(v);
103 } else {
104 ArrayList <Integer > tiedIndices = new

ArrayList <>();
105 if (countV1 == countV2 && countV1 ==

countV3) {
106 tiedIndices.add(1);
107 tiedIndices.add(2);
108 tiedIndices.add(3);
109 } else if (countV1 == countV2) {
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110 tiedIndices.add(1);
111 tiedIndices.add(2);
112 } else if (countV1 == countV3) {
113 tiedIndices.add(1);
114 tiedIndices.add(3);
115 } else if (countV2 == countV3) {
116 tiedIndices.add(2);
117 tiedIndices.add(3);
118 }
119 // Select randomly from the tied options
120 if (! tiedIndices.isEmpty ()) {
121 Random random = new Random ();
122 int selected = tiedIndices.get(random.

nextInt(tiedIndices.size()));
123 switch (selected) {
124 case 1:
125 currentPartition.V1.add(

selected);
126 break;
127 case 2:
128 currentPartition.V2.add(

selected);
129 break;
130 case 3:
131 currentPartition.V3.add(

selected);
132 break;
133 default:
134 System.out.println("No Color

Class Selected in tiebreaker
");

135 currentPartition.V1.add(
selected);

136 break;
137 }
138 }
139 }
140 }
141 partitions.add(currentPartition);
142 }
143 return partitions.getLast ();
144

145 }
146

147 public static int countNeighborsInSet(int [][] matrix , int
vertex , Set <Integer > colorClass) {

148 int count = 0;
149 for (int neighbor = 0; neighbor < matrix.length;

neighbor ++) {
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150 if (matrix[vertex ][ neighbor] > 0 && colorClass.
contains(neighbor)) {

151 count ++;
152 }
153 }
154 return count;
155 }
156

157 public static boolean phase3(int [][] matrix , Partition
partition , int threshold) {

158 int n = matrix.length;
159 // Repeatedly uncolor vertices
160 boolean changed;
161 do {
162 changed = false;
163 for (int j = 1; j <= 3; j++) { // Iterate over the

three sets in the partition
164 Set <Integer > vertices = partition.getSet(j);
165 Set <Integer > toUncolor = new HashSet <>();
166 for (int v : vertices) {
167 boolean shouldUncolor = false;
168 for (int l = 1; l <= 3; l++) {
169 if (l != j) {
170 int countNeighborsL =

countNeighborsWithColor(matrix ,
partition.getSet(l), v);

171 if (countNeighborsL < threshold /
2) {

172 shouldUncolor = true;
173 break;
174 }
175 }
176 }
177 if (shouldUncolor) {
178 toUncolor.add(v);
179 changed = true;
180 }
181 }
182 for (int v : toUncolor) {
183 partition.remove(v); // Remove uncolored

vertices from the partition
184 }
185 }
186

187 } while (changed);
188

189 //get indices of all uncolored vertices
190 Set <Integer > uncoloredVertices = getUncoloredVertices(

partition , n);
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191 int [][] uncolored_part = new int[uncoloredVertices.size
()][ uncoloredVertices.size()];

192 int newRow = 0;
193

194 for (int i = 0; i < n; i++) {
195 if (! uncoloredVertices.contains(i)) continue;
196 int newCol = 0;
197 for (int j = 0; j < n; j++) {
198 if (! uncoloredVertices.contains(j)) continue;
199 uncolored_part[newRow ][ newCol] = matrix[i][j];
200 newCol ++;
201 }
202 newRow ++;
203 }
204

205 List <Set <Integer >> components = findConnectedComponents
(uncolored_part);

206 int log3n = (int) Math.ceil(Math.log(n) / Math.log(3));
207 for (Set <Integer > component : components) {
208 //If there is a strongly connected component that

is too large , give up
209 if (component.size() > log3n) {
210 System.out.println(" Component: " + component +

" is too large");
211 return false;
212 }
213 //If you cannot brute force color , give up
214 if (! bruteForceColorComponent(matrix , component ,

partition)) {
215 System.out.println("No brute force coloring");
216 return false;
217 }
218 }
219 partition.print_partition ();
220 System.out.println("Is valid partition? " + partition.

is_valid_col(matrix));
221 return true;
222 }
223

224 public static Set <Integer > getUncoloredVertices(Partition
partition , int n) {

225 Set <Integer > uncolored = new HashSet <>();
226 for (int i = 0; i < n; i++) {
227 if (! partition.V1.contains(i) && !partition.V2.

contains(i) && !partition.V3.contains(i)) {
228 uncolored.add(i);
229 }
230 }
231 return uncolored;
232 }
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233

234 private static int countNeighborsWithColor(int [][]
adjacencyMatrix , Set <Integer > colorSet , int vertex) {

235 int count = 0;
236 for (int neighbor = 0; neighbor < adjacencyMatrix.

length; neighbor ++) {
237 if (adjacencyMatrix[vertex ][ neighbor] > 0 &&

colorSet.contains(neighbor)) {
238 count ++;
239 }
240 }
241 return count;
242 }
243

244 private static void dfs(int [][] graph , int v, boolean []
visited , Set <Integer > component) {

245 visited[v] = true;
246 component.add(v);
247 // Visit all adjacent vertices
248 for (int i = 0; i < graph.length; i++) {
249 if (graph[v][i] == 1 && !visited[i]) {
250 dfs(graph , i, visited , component);
251 }
252 }
253 }
254

255 // Function to find all connected components in the graph
256 public static List <Set <Integer >> findConnectedComponents(

int [][] graph) {
257 int n = graph.length;
258 boolean [] visited = new boolean[n];
259 List <Set <Integer >> components = new ArrayList <>();
260

261 // Perform DFS for every unvisited vertex
262 for (int i = 0; i < n; i++) {
263 if (! visited[i]) {
264 Set <Integer > component = new HashSet <>();
265 dfs(graph , i, visited , component);
266 components.add(component);
267 }
268 }
269 return components;
270 }
271

272 private static boolean bruteForceColorComponent(int [][]
adjacencyMatrix , Set <Integer > component , Partition
partition) {

273 int[] colors = {1, 2, 3};
274 List <Integer > vertices = new ArrayList <>(component);
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275 return assignColors(adjacencyMatrix , vertices ,
partition , colors , 0);

276 }
277

278 private static boolean assignColors(int [][] adjacencyMatrix
, List <Integer > vertices , Partition partition , int[]
colors , int index) {

279 if (index == vertices.size()) {
280 return true; // All vertices colored successfully
281 }
282

283 int v = vertices.get(index);
284 for (int color : colors) {
285 if (isValidColor(adjacencyMatrix , partition.getSet(

color), v)) {
286 partition.add(v, color);
287 if (assignColors(adjacencyMatrix , vertices ,

partition , colors , index + 1)) {
288 return true;
289 }
290 partition.remove(v); // Backtrack
291 }
292 }
293 return false; // No valid coloring found
294 }
295

296 private static boolean isValidColor(int [][] adjacencyMatrix
, Set <Integer > colorSet , int vertex) {

297 for (int neighbor = 0; neighbor < adjacencyMatrix.
length; neighbor ++) {

298 if (adjacencyMatrix[vertex ][ neighbor] > 0 &&
colorSet.contains(neighbor)) {

299 return false; // Conflict with neighbor
300 }
301 }
302 return true;
303 }
304

305 //given a preprocessed matrix , will run the alon -kahale
algorithm.

306 public static void alon_alg(int [][] matrix , double
threshold) {

307 EigenDecomposition eigenDecomposition = Main.calc_es(
matrix);

308 double [] evals = eigenDecomposition.getRealEigenvalues
();

309 RealVector t = get_t(eigenDecomposition.getEigenvector(
matrix.length - 2), eigenDecomposition.
getEigenvector(matrix.length - 1), evals.length);

310 Partition initial = phase1(t);
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311 initial.print_partition ();
312 Partition second = phase2(matrix , initial);
313 System.out.println("Alon alg result: " + phase3(matrix ,

second , (int) (threshold / 2.0)));
314 }
315

316

317

318 public static class Partition {
319 public Set <Integer > V1 = new HashSet <>();
320 public Set <Integer > V2 = new HashSet <>();
321 public Set <Integer > V3 = new HashSet <>();
322

323 public Set <Integer > getSet(int j) {
324 switch (j) {
325 case 1:
326 return V1;
327 case 2:
328 return V2;
329 case 3:
330 return V3;
331 default:
332 System.out.println("Empty partition ,

algorithm failed");
333 System.exit (0);
334 return null;
335 }
336 }
337

338 public void print_partition () {
339 System.out.print("Partition 1: [");
340 for (Integer i : V1) {
341 System.out.print(i + ", ");
342 }
343 System.out.println("]");
344 System.out.print("Partition 2: [");
345 for (Integer i : V2) {
346 System.out.print(i + ", ");
347 }
348 System.out.println("]");
349 System.out.print("Partition 3: [");
350 for (Integer i : V3) {
351 System.out.print(i + ", ");
352 }
353 System.out.println("]");
354 }
355

356 public void remove(int v) {
357 if (V1.contains(v)) {
358 V1.remove(v);
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359 } else if (V2.contains(v)) {
360 V2.remove(v);
361 } else if (V3.contains(v)) {
362 V3.remove(v);
363 } else {
364 System.out.println("Tried to remove an invalid

vertex from partition");
365 }
366 }
367

368 public void add(int v, int color) {
369 switch (color) {
370 case 1:
371 V1.add(v);
372 break;
373 case 2:
374 V2.add(v);
375 break;
376 case 3:
377 V3.add(v);
378 break;
379 default:
380 System.out.println("Tried to add an invalid

vertex to partition");
381 }
382 }
383

384 public boolean is_valid_col(int [][] mat) {
385 for (Integer i : V1) {
386 for (Integer j : V1) {
387 if (! Objects.equals(i, j)) {
388 if (mat[i][j] == 1) {
389 return false;
390 }
391 }
392 }
393 }
394 for (Integer i : V2) {
395 for (Integer j : V2) {
396 if (! Objects.equals(i, j)) {
397 if (mat[i][j] == 1) {
398 return false;
399 }
400 }
401 }
402 }
403 for (Integer i : V3) {
404 for (Integer j : V3) {
405 if (! Objects.equals(i, j)) {
406 if (mat[i][j] == 1) {
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407 return false;
408 }
409 }
410 }
411 }
412

413 return true;
414 }
415

416

417 }

B.2 Difficult Example Algorithm

1

2 //given eigenvectors corresponding to the most negative
eigenvalue , return only those in {-1,0,1}ˆ*

3 public static int [][] preproc_evs(int [][] ev){
4 ArrayList <int[]> good = new ArrayList <>();
5 for (int[] ints : ev) {
6 boolean bad = false;
7 for (int j = 0; j < ev[0]. length; j++) {
8 if (!( ints[j] == 0) && !(ints[j] == 1) && !(

ints[j] == -1)) {
9 bad = true;

10 break;
11 }
12 }
13 if (!bad) {
14 good.add(ints);
15 }
16 }
17 int [][] goodtogo = new int[good.size()][ev.length ];
18 for(int i = 0; i<good.size(); i++){
19 goodtogo[i] = good.get(i);
20 }
21 return goodtogo;
22 }
23

24 //given a preprocessed set of eigenvectors , return two
that do not overlap -1s.

25 public static int [][] find2(int [][] ev){
26 for (int i = 0; i<ev.length; i++){
27 for(int j = i+1; j<ev.length; j++){
28 int[] v1 = ev[i];
29 int[] v2 = ev[j];
30 boolean next = false;
31 for(int k = 0; k<v1.length; k++){
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32 if(v1[k] == -1 && v2[k] == -1){
33 next = true;
34 break;
35 }
36 }
37 if(next){ break ;}
38 return new int [][]{v1, v2};
39 }
40 }
41 System.out.println("None found ... something is amiss");
42 return null;
43 }
44

45 //given an adjacency matrix and a list of preprocessed
eigenvectors , will return a spectral partitioning

46 public static Partition counterex_partition(int [][] mat ,
int [][] ev){

47 int [][] evs = Main.find2(ev);
48 Partition init = initial_partition(mat , evs);
49 Partition second = second_partition(mat , init);
50 Partition third = third_partition(mat , second);
51 return third;
52 }
53

54

55 public static Partition initial_partition(int [][] mat , int
[][] evs){

56 Partition partition = new Partition ();
57 for(int i = 0; i < mat.length; i++){
58 if(evs [0][i] == -1){
59 partition.add(i, 1);
60 }else if(evs [1][i] == -1){
61 partition.add(i, 2);
62 }
63 }
64 return partition;
65 }
66

67 public static Partition second_partition(int [][] mat ,
Partition init){

68 Partition second = init;
69 for(int i = 0; i < mat.length; i++){
70 if(! second.V1.contains(i) && !second.V2.contains(i)

){
71 boolean NOTA = false;
72 boolean NOTB = false;
73 for(int j = 0; j < mat[i]. length; j++){
74 if(mat[i][j] == 1){
75 if(second.V1.contains(j)){
76 NOTA = true;
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77 }
78 if(second.V2.contains(j)){
79 NOTB = true;
80 }
81 }
82 if(NOTA && NOTB){
83 second.add(i, 3);
84 }
85 }
86 }
87 }
88 return second;
89 }
90

91 public static Partition third_partition(int [][] mat ,
Partition party){

92 Partition third = party;
93 for (int i = 0; i< mat.length; i++){
94 if(!third.V1.contains(i) && !third.V2.contains(i)

&& !third.V3.contains(i)){
95 boolean NOTA = false;
96 boolean NOTB = false;
97 boolean NOTC = false;
98 for(int j = 0; j < mat[i]. length; j++){
99 if(mat[i][j] == 1){

100 if(third.V1.contains(j)){
101 NOTA = true;
102 }
103 if(third.V2.contains(j)){
104 NOTB = true;
105 }
106 if(third.V3.contains(j)){
107 NOTC = true;
108 }
109 }
110

111 }
112 if(NOTA && NOTB && NOTC){
113 System.out.println("Coloring Failed , no

color available");
114 return null;
115 }else if(NOTA && NOTB){
116 third.add(i, 3);
117 }else if(NOTA && NOTC){
118 third.add(i, 2);
119 }else if(NOTB && NOTC){
120 third.add(i, 1);
121 }else{
122 System.out.println("List 2");
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123 // System.out.println (" Coloring failed , more
than 1 available ");

124 }
125

126 }
127 }
128 return third;
129 }
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