[19] “Quasi Diabatic Propagation Scheme for Direct Simulation of Proton-Coupled Electron Transfer Reaction”,
A. Mandal, J. S. Sandoval, F. A. Shakib and P. Huo Submitted (2019).

[18] “Symmetric Quasi Classical Dynamics with Quasi Diabatic Propagation Scheme”,
J. S. Sandoval, A. Mandal and P. Huo J. Chem. Phys. 149, 044115 (2018).

[17] “Investigating Photoinduced Proton Coupled Electron Transfer Reaction using Quasi Diabatic Dynamics Propagation”,
A. Mandal, F. A. Shakib and P. Huo J. Chem. Phys. 148, 244102 (2018).

[16] “Quasi Diabatic Representation for Nonadiabatic Dynamics Propagation”,
A. Mandal, S. Yamijala and P. Huo J. Chem. Theory Comput. 14, 1828 (2018).

[15] “Coherent State Mapping Ring-Polymer Molecular Dynamics for Non-Adiabatic quantum propagations”,
S. Chowdhury and P. Huo, J. Chem. Phys. 147, 214109 (2017).

[14] “Ring Polymer Surface-Hopping: Incorporating Nuclear Quantum Effects Into Non-Adiabatic Molecular Dynamics Simulations”,
F. A. Shakib and P. Huo, J. Phys. Chem. Lett. 8, 3073 (2017).

[13] “Enhancing Singlet-Fission Dynamics by Suppressing Destructive Interference between Charge-Transfer Pathways”,
M. Castellanos and P. Huo, J. Phys. Chem. Lett. 8, 2480 (2017).

[12] “Breaking the correlation between energy costs and kinetic barriers in hydrogen evolution via a cobalt (pyridine-diimine-dioxime) catalyst”,
P. Huo, C. Uyeda, J. D. Goodpaster, J. C. Peters, and T. F. Miller, ACS Catal. 6, 6114 (2016).

[11] “Semi-classical path integral dynamics: Photosynthetic energy transfer with realistic environment interactions”,
M. Lee, P. Huo and D.F. Coker, Ann. Rev. Phys. Chem. 67, 639 (2016).

[10] “Electronic coherence and the kinetics of inter-complex energy transfer in light-harvesting systems” (themed issue on Measurement and prediction of quantum coherence effects in biological processes),
P. Huo and T.F. Miller, Phys. Chem. Chem. Phys. 17, 30914 (2015).

[9] “Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics”,
P. Huo, T.F. Miller and D.F. Coker, J. Chem. Phys. 139, 151103 (2013).

[8] “Consistent schemes for non-adiabatic dynamics derived from partial linearized density matrix propagation” (Special Issue on Non-adiabatic dynamics inspired by John Tully),
P. Huo and D.F. Coker, J. Chem. Phys. 137, 22A535 (2012).

[7] “Semi-classical path integral non-adiabatic dynamics: a partial linearized classical mapping Hamiltonian approach” (William H. Miller Festschrift),
P. Huo and D.F. Coker, Mol. Phys. 110, 1035 (2012).

[6] “Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems”,
P. Huo and D.F. Coker, J. Chem. Phys. 136, 115102 (2012).

[5] “Communication: Partial linearized density matrix dynamics for dissipative, non- adiabatic quantum evolution”,
P. Huo and D.F. Coker, J. Chem. Phys. 135, 201101 (2011).

[4] “Efficient energy transfer in light-harvesting systems, III: The influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO”,
J. Moix, J. Wu, P. Huo, D.F. Coker and J.Cao, J. Phys. Chem. Lett. 2, 3045 (2011).

[3] “Theoretical Study of Coherent Exciton Transfer in Cryptophyte Phycocyanin 645 at Physiological Temperature”,
P. Huo and D.F. Coker, J. Phys. Chem. Lett. 2, 825 (2011).

[2] “Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting”,
P. Huo and D.F. Coker,  J. Chem. Phys. 133, 184108 (2010).

[1] “Linearized approximations for condensed phase non-adiabatic dynamics: Multi-layered baths and Brownian dynamics implementation” (Eli Pollak Festschrift),
P. Huo, S. Bonella, L. Chen and D. F. Coker, Chem. Phys. 370, 87 (2010).


Loading posts...
Sort Gallery