[20] “State Dependent Ring Polymer Molecular Dynamics for Investigating Excited Nonadiabatic Dynamics”,
S. Chowdhury and P. Huo (submitted) (2019).

[19] “Quasi Diabatic Propagation Scheme for Direct Simulation of Proton-Coupled Electron Transfer Reaction” (Published as part of The Journal of Physical Chemistry virtual special issue “Young Scientists”),
A. Mandal, J. S. Sandoval, F. A. Shakib and P. Huo J. Phys. Chem. A 123, 2470 (2019).

[18] “Symmetric Quasi Classical Dynamics with Quasi Diabatic Propagation Scheme”,
J. S. Sandoval, A. Mandal and P. Huo J. Chem. Phys. 149, 044115 (2018).

[17] “Investigating Photoinduced Proton Coupled Electron Transfer Reaction using Quasi Diabatic Dynamics Propagation”,
A. Mandal, F. A. Shakib and P. Huo J. Chem. Phys. 148, 244102 (2018).

[16] “Quasi Diabatic Representation for Nonadiabatic Dynamics Propagation”,
A. Mandal, S. Yamijala and P. Huo J. Chem. Theory Comput. 14, 1828 (2018).

[15] “Coherent State Mapping Ring-Polymer Molecular Dynamics for Non-Adiabatic quantum propagations”,
S. Chowdhury and P. Huo, J. Chem. Phys. 147, 214109 (2017).

[14] “Ring Polymer Surface-Hopping: Incorporating Nuclear Quantum Effects Into Non-Adiabatic Molecular Dynamics Simulations”,
F. A. Shakib and P. Huo, J. Phys. Chem. Lett. 8, 3073 (2017).

[13] “Enhancing Singlet-Fission Dynamics by Suppressing Destructive Interference between Charge-Transfer Pathways”,
M. Castellanos and P. Huo, J. Phys. Chem. Lett. 8, 2480 (2017).

[12] “Breaking the correlation between energy costs and kinetic barriers in hydrogen evolution via a cobalt (pyridine-diimine-dioxime) catalyst”,
P. Huo, C. Uyeda, J. D. Goodpaster, J. C. Peters, and T. F. Miller, ACS Catal. 6, 6114 (2016).

[11] “Semi-classical path integral dynamics: Photosynthetic energy transfer with realistic environment interactions”,
M. Lee, P. Huo and D.F. Coker, Ann. Rev. Phys. Chem. 67, 639 (2016).

[10] “Electronic coherence and the kinetics of inter-complex energy transfer in light-harvesting systems” (themed issue on Measurement and prediction of quantum coherence effects in biological processes),
P. Huo and T.F. Miller, Phys. Chem. Chem. Phys. 17, 30914 (2015).

[9] “Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics”,
P. Huo, T.F. Miller and D.F. Coker, J. Chem. Phys. 139, 151103 (2013).

[8] “Consistent schemes for non-adiabatic dynamics derived from partial linearized density matrix propagation” (Special Issue on Non-adiabatic dynamics inspired by John Tully),
P. Huo and D.F. Coker, J. Chem. Phys. 137, 22A535 (2012).

[7] “Semi-classical path integral non-adiabatic dynamics: a partial linearized classical mapping Hamiltonian approach” (William H. Miller Festschrift),
P. Huo and D.F. Coker, Mol. Phys. 110, 1035 (2012).

[6] “Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems”,
P. Huo and D.F. Coker, J. Chem. Phys. 136, 115102 (2012).

[5] “Communication: Partial linearized density matrix dynamics for dissipative, non- adiabatic quantum evolution”,
P. Huo and D.F. Coker, J. Chem. Phys. 135, 201101 (2011).

[4] “Efficient energy transfer in light-harvesting systems, III: The influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO”,
J. Moix, J. Wu, P. Huo, D.F. Coker and J.Cao, J. Phys. Chem. Lett. 2, 3045 (2011).

[3] “Theoretical Study of Coherent Exciton Transfer in Cryptophyte Phycocyanin 645 at Physiological Temperature”,
P. Huo and D.F. Coker, J. Phys. Chem. Lett. 2, 825 (2011).

[2] “Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting”,
P. Huo and D.F. Coker,  J. Chem. Phys. 133, 184108 (2010).

[1] “Linearized approximations for condensed phase non-adiabatic dynamics: Multi-layered baths and Brownian dynamics implementation” (Eli Pollak Festschrift),
P. Huo, S. Bonella, L. Chen and D. F. Coker, Chem. Phys. 370, 87 (2010).


Loading posts...
Sort Gallery