Agenda: Kinetics and Transport in Multiparticle Systems

Dynamics of interacting multi-particle systems

- Interaction energies
 Dissipation via multiple scattering
- Probabilistic evolution
 Random walk and binomial distribution, limits
 Master Equation & Diffusion/Fokker-Planck processes
 Maxwell-Boltzmann equilibrium energy distributions
 Fluctuating (Langevin) dissipative forces
- Kinetics of dilute gases
 Fundamental ideal gas laws, Equation of state (EoS)
 Work and heat transfer
 Flow of heat and radiation
 - Laws of thermodynamics, thermodynamic ensembles

Reading Assignments Weeks 3 &4 LN II.6, III.1:

Kondepudi Ch. 9.6 Additional Material

McQuarrie & Simon Ch. 3.1 -3.4

> Math Chapters MC B, C, D,

ME @Dissipative Transport

Cell populations after some time has elapsed? Dependence on transition probabilities $\boldsymbol{w}_{n \rightarrow m}$ and $\boldsymbol{w}_{m \rightarrow n}$? \rightarrow Simplified model : $\boldsymbol{w}_{n \rightarrow m} = \boldsymbol{w}_{m \rightarrow n}$ (time reversal invariance, quantum requirement)

Dimension
=1
$$\frac{\partial}{\partial t}f_{n}(t) = \sum_{m} w_{m,n} \{f_{m}(t) - f_{n}(t)\} = \begin{cases} > 0 & f_{m} > f_{n} \\ < 0 & f_{m} < f_{n} \end{cases} \xrightarrow{\text{Expand}} to 2 D$$

 $f_n(t)$ and $f_m(t)$ are the actual, instantaneous populations of cells n, m at time t.

Cell *n* receives population from all cells *m* with higher population and loses to cells with lower pops. Rate $\partial f_n(t) / \partial t$ depends on population difference

→ Mean rate slows when all $\langle f_m \rangle \approx \langle f_n \rangle$ But instantaneous rate doesn't vanish!

Animation: N=200 particle cluster $f_{00}=1(200)$, $f_{xy}=0$, $w_{nm}=w_{mn}$,=const

Fokker-Planck Transport Equation

2nd order $\left|\frac{\partial}{\partial t}f_{n}(t)\approx-\frac{\partial}{\partial n}\left[\left(W_{+}(n)-W_{-}(n)\right)f_{n}\right]+\frac{1}{2}\frac{\partial^{2}}{\partial n^{2}}\left[\left(W_{+}(n)+W_{-}(n)\right)f_{n}\right]\right|$ Taylor Expansion $\frac{\partial}{\partial t}f_{n}(t)\approx-\frac{\partial}{\partial n}\left[\mathbf{v}_{n}\cdot\mathbf{f}_{n}\right]+\frac{\partial^{2}}{\partial n^{2}}\left[D_{nn}\cdot\mathbf{f}_{n}\right]$ $v_n = w_+(n) - w_-(n)$ Drift Coefficient $D_n = \frac{1}{2} (w_+(n) + w_-(n))$ Diffusion Coefficient $v_n \leftrightarrow anisotropy of probability flow$ $D_n \leftrightarrow average \ probability \ out \ flow$

Mass (density ρ_{M}) \rightarrow mass flux $\vec{j}_{M} \sim \rho_{M} \cdot \vec{v}_{n}$

General trends in the evolution of cell *n* population:

- 1. overall stream of population away (or towards) cell = drift, $W_{+}(n) \neq W_{-}(n)$
- 2. diffuse broadening of stream envelope = diffusion, $\overline{w}(n) = (w_{+}(n) + w_{-}(n))/2$

Frnsprt RW-Diff

For constant Drift & Diffusion coefficients

$$\frac{\partial}{\partial t}f_n(t) \approx -\frac{\partial}{\partial n}\left[v_n \cdot f_n\right] + \frac{\partial^2}{\partial n^2}\left[D_n \cdot f_n\right] \implies \frac{\partial}{\partial t}f_n(t) \approx -v_n \cdot \frac{\partial f_n}{\partial n} + D_n \cdot \frac{\partial^2 f_n}{\partial n^2}$$

Mass flux \vec{i} and \vec{v}

Time evolution of cell *n* population: Probability distribution f_n has *t*-dependent bellshape, maximum around the mean, falling off sideways \rightarrow Gaussian normal distribution

Population
Probability
cell *n*
$$f_n(t) = \frac{1}{\sqrt{2\pi\sigma_n^2(t)}} \exp\left\{-\frac{(n-\bar{n}(t))^2}{2\sigma_n^2(t)}\right\}$$

Mean
Variance
$$\overline{n(t)} = \overline{n(0)} + v_n \cdot t$$

 $\sigma_n^2(t) = \sigma_n^2(0) + 2D_n \cdot t$
 $\overline{\sigma_n^2(t)} = \frac{\overline{n(t)} - \overline{n(0)}}{\sigma_n^2(t)} = \frac{v_n}{2D_{nn}} = const.$

Typical gas in gas (@ $T \approx 288K$): $D \sim 10^{-5} m^2/s$

Strong T dependence

Trnsprt RW-Diff

For constant Drift & Diffusion coefficients

D

Trnsprt RW-Diff

Diffusive Transport: Diffusion Equation

No advection \rightarrow zero drift (*isotropic* $\rightarrow v_n = 0$) & constant diffusion ($D_n > 0$) coeff's

Fick's Diffusion Laws

Diffusion limit of Fokker-Planck process

$$\frac{\partial}{\partial t}c(\vec{r},t)=D_{n}\cdot\Delta c(\vec{r},t)$$

Change depends on nonlinearity of environment

Fluid dynamics for stream of **N**=const. particles \rightarrow temporal rate of change in *specific* population f(x,y,z)=concentration c of volume element $dV \rightarrow$ total time derivative of population.

In general D(x,y,z) is anisotropic 3x3 tensor.

Particle Flux (flow density)
$$\vec{j}(\vec{r}) = -\vec{w} \cdot \vec{\nabla}c(\vec{r}) = -D \cdot \vec{\nabla}c(\vec{r})$$
 Fick's 1st Law

Check for consistency

Continuity Equation total *t*-derivative

$$\frac{dc}{dt} = \frac{\partial c}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0$$

$$\left|\frac{\partial c}{\partial t} = -\vec{\nabla} \cdot \vec{j} = +\vec{\nabla} \cdot \left[D \cdot \vec{\nabla}c\left(\vec{r}\right)\right] \approx D \cdot \Delta c\left(\vec{r}\right)$$

Fick's 2nd Law

Example: Cumulative Diffusion Flow

Warming tundra soil releases sequestered greenhouse gases.

Error Function erf(z) = $\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-x^{2}} \cdot dx$ erf(z) = -erf(z); erf(∞) = 1 Complementary error function erfc(z) = 1 - erf(z) Initial Conditions $C(z,t=0) = C_0$ C(z=0,t>0) = 0 $C(z \to -\infty,t) = C_0$

Cumulative effect (over all z<0)

$$C(z,t) \propto \frac{1}{\sqrt{\pi}} \int_{-\infty}^{z} c(x,t) dx$$

$$c(z,t) = c_0 \cdot erf\left\{\frac{z}{\sqrt{4D \cdot t}}\right\}$$

Surface flow
$$\int_{c}^{b} (t) = c_0 \cdot \sqrt{\frac{D}{\pi \cdot t}}$$

Example: **D** for Hydrogen Diffusion in Metals

H in Ni

0.003

0.004

T_(Pd) = 1828 K

 $T_{m}(Ni) = 1728 K$

0.001

 $T_{c}(Ni) = 627 K$

1/T in K⁻¹

0.002

Tracer= radioactive species (hydrogen isotope tritium ³H).

Apply thin tracer activity **A** on clean surface of **Fe** sample at x=0 @ t=0, sample @ temperature **T** \rightarrow pulse @t=0

Wait for Δt several hours, then section sample in x direction \rightarrow measure *T* concentration as

$$c(x,\Delta t) = \frac{A}{\sqrt{\pi D \cdot \Delta t}} err\left(\frac{x}{\sqrt{4D \cdot \Delta t}}\right)$$

Found **T** dependent diffusion coefficients of ³H in Fe, Pd, Ni

$$D^{i}(T) = D_{0}^{i} e^{-Q_{i}/k_{B}T} \sim (10^{-15} - 10^{-7}) \frac{m^{2}}{s}$$

Rxnenergy Q_i ; i = Fe, Pd, Ni Boltzmann $k_B = 1.38 \cdot 10^{-23} \text{ J/K}$

σ

10-13

H. Mehrer, 2007

Lithium Diffusion In Silicon

Example of a pathway for the diffusion of a lithium atom (violet) in bulk amorphous silicon. The numbers label the (interstitial) equilibrium sites between which lithium hops. Crystal bond length $b_0 = 2.37$ Å.

Quantum mechanical Tunnel Effect Transmission through barrier @ particle E $T(E_p) \approx \exp\left\{-2d\sqrt{2m(U-E_p)/\hbar^2}\right\}$ $E_p \ge U \rightarrow T \sim 1$ Effective diffusion coefficient $D(U, E_p) = D_0 \cdot \begin{cases} \ll 1 \text{ for } E_p < U & \text{Depends on} \\ & \text{particle} \\ & \text{energy} \\ \sim 1 \text{ for } E_p \ge U \end{cases}$

Gas Diffusion/Permeation through Metals

Molybdenum Gas Diffusion Constant

C. J. Smithells and C.E. Ransley (Proc. Royal Society, 1935) https://royalsocietypublishing.org/

Experimental Magnitudes of Transport Coefficients

Gas in Gas	$D_g (m^2 s^{-1})$
O_2 in O_2	1.89×10^{-5}
N_2 in N_2	1.98×10^{-5}
CO_2 in CO_2	1.04×10^{-5}
O ₂ in Air	1.78×10^{-5}
CO ₂ in Air	1.38×10^{-5}
H ₂ O in Air	2.36×10^{-5}

Table IV-1: Experimental Diffusion Coefficients						
System	D/cm ² s ⁻¹	T/K	System	D/10 ^{-s} cm ² s ⁻¹	T/K	
He-He	2.38	275	Au in Ag	2.46	1253	
He-H₂	0.25	90	In in Ag	3.81	1253	
He-N₂	0.09	77	Sb in Ag	4.11	1253	
He-SF₅	16.36	2900	Ag in Ag	1.27 10-4	723	
Ne ₂ H ₂	0.15	90	Co in Co	<u>በ ዓና 1በ-</u>	1043	

Gas	M_{mol} (10 ⁻³ kg mol ⁻¹)	$ ho_{g}$ at <i>SP</i> , <i>T</i> = 288 K (kg m ⁻³)
Nitrogen	28	1.19
Oxygen	32	1.36
Air	28.9	1.22
Hydrogen	2	0.08
Methane	10	0.42
Water Vapour	18	0.76
Carbon Dioxide	38	1.61
Radon	222	9.40

Typical for gas in gas $D \sim 10^{-5} m^2/s$

Agenda: Kinetics and Transport in Multiparticle Systems

Dynamics of interacting multi-particle systems

- Interaction energies
 Dissipation via multiple scattering
- Probabilistic evolution
 Random walk and binomial distribution
 Diffusion processes
 Maxwell-Boltzmann energy distributions
 Fluctuating (Langevin) dissipative forces
- Kinetics of dilute gases
 Fundamental ideal gas laws, Equation of state (EoS)
 Work and heat transfer
 Flow of heat and radiation
 - Laws of thermodynamics, thermodynamic ensembles

Reading Assignments Weeks 3 &4 LN II.6, III.1:

Kondepudi Ch. 9.6 Additional Material

McQuarrie & Simon Ch. 3.1 -3.4

> Math Chapters MC B, C, D,

Random Velocity Distribution

Particle velocities change differently through different collisions \rightarrow random speeds, random 3D directions → for all possible \vec{u} ; $0 \le |\vec{u}| \le \infty$ Probability distribution $d^{3}P(\vec{u})/d^{3}\vec{u}$ Cartesian coordinates $d^{3}P(\vec{u}) = f(\vec{u}) \cdot d^{3}\vec{u} = f(u_{x}, u_{y}, u_{z}) \cdot \underbrace{du_{x} \cdot du_{y} \cdot du_{z}}_{d^{3}\vec{u}}$ $f(+\vec{u}) = f(-\vec{u}) \rightarrow f(\vec{u}) = f(\vec{u}^2) = f(u_x^2 + u_v^2 + u_z^2)$

reflected Hard-sphere scattering has isotropic angular distribution incident

Independent components u_x,u_v,u_z $\rightarrow d^{3}P(\vec{u}) = \left[f(u_{x})du_{x}\right]\left[f(u_{y})du_{y}\right]\left[f(u_{z})du_{z}\right]$

Random Velocity Distribution

Particle velocities change differently through different collisions \rightarrow random speeds, random 3D directions \rightarrow for all possible \vec{u} ; $0 \le |\vec{u}| \le \infty$ Probability distribution $d^3P(\vec{u})/d^3\vec{u}$ Cartesian coordinates $d^3P(\vec{u}) = f(\vec{u}) \cdot d^3\vec{u} = f(u_x, u_y, u_z) \cdot \underbrace{du_x \cdot du_y \cdot du_x}_{d^3\vec{u}}$

$$f(+\vec{u}) = f(-\vec{u}) \to f(\vec{u}) = f(\vec{u}^2) = f(u_x^2 + u_y^2 + u_z^2)$$

Only suitable function

$$f(u^{2}) = f(u_{x}^{2} + u_{y}^{2} + u_{z}^{2}) = f(u_{x}^{2}) \cdot f(u_{y}^{2}) \cdot f(u_{z}^{2})$$

$$f(u^2) = C \cdot e^{-au^2}$$

Differential probabilities
$$f(u_x) = \frac{dP(u_x)}{du_x}; \cdots$$

Need to determine exponent constant **a**

16

Trnsprt RW-Diff

Maxwell-Boltzmann Velocity Distribution

Particle velocities change differently through different collisions \rightarrow random speeds, random 3D directions \rightarrow for all possible \vec{u} ; $0 \le |\vec{u}| \le \infty$

Probability distribution $d^3P(\vec{u})/d^3\vec{u}$ Cartesian coordinates $d^3P(\vec{u}) = f(\vec{u}) \cdot d^3\vec{u} = f(u_x, u_y, u_z) \cdot d^3\vec{u}$

$$\langle \varepsilon_{kin} \rangle = \frac{m}{2} \langle u_x^2 \rangle \text{ with } \langle u_x^2 \rangle = \int_{-\infty}^{+\infty} du_x \, u_x^2 \cdot f\left(u_x^2\right) \rightarrow$$

$$\langle u_x^2 \rangle = \sqrt{\frac{a}{\pi}} \int_{-\infty}^{+\infty} du_x \, u_x^2 \, e^{-au_x^2} = 2\sqrt{\frac{a}{\pi}} \int_{0}^{+\infty} du_x \, u_x^2 \, e^{-au_x^2} = \frac{1}{2a}$$

random "Heat" or thermal energy →"Temperature" T

T is measure of *mean* particle kinetic energy $\rightarrow \varepsilon_{kin}$ has also fluctuations (is a spectrum). $\rightarrow N$ -particle ensemble constitutes a *heat reservoir* = "heat bath"

Maxwell-Boltzmann Velocity Distribution

Here, T is the mean particle kinetic energy $\rightarrow \varepsilon_{kin}$ has fluctuations (a spectrum) $\rightarrow N$ -particle ensemble constitutes a *heat reservoir* = "heat bath"

100

W. Udo Schröder 2025

The Final State: Randomized Thermal Energy

$$P(\varepsilon,T) = \frac{dN}{d\varepsilon} \propto \sqrt{\varepsilon} \cdot e^{-\frac{\varepsilon}{k_B T}}$$

Particles in gas volume collide continuously. Transfer of momentum and energy occur depending centrality of collisions (head on,...., grazing) like \triangleq hard spheres. \rightarrow randomly fluctuating ("thermal") "Maxwell-Boltzmann" kinetic-energy spectrum. Mean kinetic energy per particle $\langle \varepsilon \rangle \propto T$ ("temperature") (Ideal gas: internal U= ε (kinetic energy), no potential energy \triangleq no interactions)

Random (Thermal) Motion in Space

Random Positions of Particles

Example: Motion in two dimensions of 300 non-interacting (ideal-gas) particles.

All particles move in random directions because of multiple collisions, which actually do occur but are not explicitly treated here.

Every particle visits every one of the energetically equivalent cells. **Contrast: Collective motion.**

Particles in a gas move in different directions and at different speeds, colliding with one another often. Eventually, their positions at any given time are random.

 \rightarrow All available (accessible) space is visited by all particles (in due time).

 \rightarrow

→ Ergodic Theorem

Energy transfer to gas of independent particles in containment. By scattering or by incoherent (short wavelength) radiation \rightarrow chaotic motion of particles in space \rightarrow transferred energy is dissipated \rightarrow not totally reversible

 $\langle E_{_{kin}} \rangle_{_{all \ particles}} \triangleq Temperature \ T$

Snapshot (*time*) = microscopic state of multi-particle system

Chaotic motion in configuration space. Characteristic velocity and energy spectrum (Maxwell-Boltzmann). Massive (m_i) particles: positions \vec{q}_i , momenta $\vec{p}_i \rightarrow Phase space \{\vec{q}_i, \vec{p}_i\}$