Agenda: Kinetics and Transport in Multiparticle Systems

Dynamics of interacting multi-particle systems

- Interaction energies
 Dissipation & randomization via multiple scattering
- Probabilistic evolution
 Random walk and binomial distribution
 Diffusion/Fokker-Planck processes (Master Equation)
 Fluctuating (Langevin) dissipative forces
 Maxwell-Boltzmann equilibrium energy distributions
- Kinetics of dilute gases
 Fundamental "Ideal Gas" laws, Equation of state (EoS)
 Work and heat transfer
 Flow of heat and radiation
 Laws of thermodynamics, thermodynamic ensembles

Reading Assignments Weeks 3 &4 LN III.1-III.3:

Kondepudi Ch. 1,3,7 Additional Material

McQuarrie & Simon Ch. 3.1 -3.4

Math Chapter(s) MC E

Motivation: Practical Importance of Transport Phenomena

Dissipation (friction, viscosity) and Equilibrium Phenomena, understanding equilibrium=stationary states of matter. Analytical tool for basic physics & technology, e.g., material science.

- Brownian particle motion on surfaces & in space: gases, liquids, and solids, incl. organic materials Biology, Medicine, Semiconductor industry,
- Diffusion and mixing of gases in gases like air→ practical applications, smell, toxic gases, Climate CO₂ atmosphere, DAC CO₂, transport in gaseous plasmas
- Diffusion of gases in liquids (glasses, plastics) gas in liquids: acidification of ocean water, environment, climate DAC CO₂
- Diffusion & permeation of gases in solids: chemical industry, reactors Hydrogen economy, nuclear energy, fusion reactors, isotopic separation
- Diffusion of liquids in liquids Mixing industrial fluids, pollution of rivers, lakes, ground water
- Diffusion of liquids in solid matrices Chemical industry, contamination of toxic waste in soil, corrosion

 \sim

Atomic Potential Interacting Energies

Multi-Particle Systems : ≥6·*N* dof

Lennard-Jones potential: Attractive (< 0) at intermediate & large distances, repulsive (>>0) at small distances

Work = Kinetic Energy Gain/Loss = ΔV

$$\Delta K_{r_a \to r_b} = -\int_{r_a}^{r_b} \frac{dV}{dr} \cdot dr = V(r_a) - V(r_b)$$

Energy Transfer & Dissipation in Multiple Interactions

A stationary lattice of massive (M), chemically bound atoms or ions at rest is hit by fast projectiles, particles or photons $(m \ll M)$.

Depending on how and where the first few lattice particles are hit, a few collisions and their momentum and energy transfer change drastically. Small changes in *b* cause very different trajectories (chaotic dynamics). Energetic disturbance travels and disperses through lattice.

Lattice Scattering.avi

Scattered projectiles leave the lattice at very different final speeds and directions, depending on the initial conditions (impact parameter)

Collisions with unbound **gas** particles are even "more random" than collisions with a periodic solid-sate lattice structure.

Randomization via Multiple Interactions

Lattice_Scattering.avi

A stationary lattice of massive (M), chemically bound atoms or ions at rest is hit by fast projectiles, particles or photons $(m \ll M)$.

Depending on how and where the first few lattice particles are hit, a few collisions and their momentum and energy transfer change drastically. Small changes in *b* cause very different trajectories (chaotic dynamics). Energetic disturbance travels and disperses through lattice.

Scattered projectiles leave the lattice at very different final speeds and directions, depending on the initial conditions (impact parameter)

Collisions with unbound **gas** particles are even "more random" than collisions with a periodic solid-sate lattice structure.

Binary Random Walk (RW)

Configuration (state) space of a system is approximated by a **1-dimensional** lattice of equal cells $\Delta x = \Delta m = \pm 1$. (Simple to extend to 3-D and n-D) Scenario: 2 discrete properties for discrete t-evolution (Yor N; L or R;) **3D Random Walk** Time $t_i \rightarrow t_{i+1}$ transition rule: each cell $m \rightarrow m \pm 1$. Time evolution of CA modeled in discrete time steps \rightarrow generations. Evolution @ probabilistic rule: probabilities p_{1} and p_{1} with $p_{2}+p_{1}=1$ Initial cell @ $m(t_1) = 0 \rightarrow \text{Consider } RW$ "trajectory" $p_1 = p_1 = 1/2$; $N = total number of steps, with N_{+} to the right, N_{-} steps to the left.$ 1D Random Walk Automaton Time t m = -1m=0m = +1 $\boldsymbol{\rho}_{\scriptscriptstyle -} = (\boldsymbol{1} - \boldsymbol{\rho}_{\scriptscriptstyle +})$ **p**₊ t_{i+1} m = -1m=0m = +1

Question: How to change procedure to admit $m=0 \rightarrow m=0$?

Ś

Transpor

Deterministic vs. Probabilistic Propagation Protocols

Binary Random Walk (Unbiased)

Equal probabilities per step $p_{-}=p_{+}=1/2$ Let RW evolve over some time = total number of steps = $N \gg 1$.

Equal probabilities \rightarrow Averaged over entire history = trajectory:

$$\langle N_{-} \rangle_{N} = \langle N_{+} \rangle_{N} \rightarrow \langle m \rangle_{N} = 0$$

For a given trajectory, what is actual final position $m=m(t_N)$ after N steps ?

Cannot be answered precisely, since this is not a deterministic process, but ...

For a given
$$m = m(t_N) \rightarrow N_- = \frac{1}{2}(N - m)$$
 and $N_+ = \frac{1}{2}(N + m)$
 $\rightarrow m = N_+ - N_-$ (can be reached by different trajectories)

Final position **m** (after **N** steps) of trajectory is determined by the simple difference in # of left vs. right steps, since $p_{-}=p_{+}=1/2$. For $p_{-}\neq p_{+}$, left and right step numbers must be weighted by corresponding probabilities.

Binary Random Walk (on a Lattice)

Equal probabilities per step $p_{-}=p_{+}=1/2$ Let RW evolve over some time = total number of steps = $N \gg 1$.

How to calculate probability that a random trajectory stating at m=0 @ t_0 will end up populating $m(t_N)$? \rightarrow Count # of all trajectories with N steps that lead from $m(t_0)=0 \rightarrow m(t_N)$.

Known is (for example) $m = m(t_N) > 0 \rightarrow m = N_+ - N_-$

5

Franspor

Binomial Probability Distribution

Arbitrary *Lvs.R* (binomial) probabilities $p_++p_+=1$. RW evolves for $N \gg 1$ steps.

The **probability** for a random trajectory to land at position $m = N_+-N_-$ after N steps in directions with associated individual probabilities $p_++p_+=1$ is given by the <u>binomial distribution</u> in N_+ (or N_-)

$$P(N, N_{+}) = \frac{N!}{(N_{+})! (N - N_{+})!} \cdot p_{+}^{N_{+}} \cdot p_{-}^{N - N_{+}} \rightarrow$$
Start Position **m=0**

$$I_{+} = I_{+} = I_{+$$

$$P(N, N_{+}) = {\binom{N}{N_{+}}} \cdot p_{+}^{N_{+}} \cdot (1 - p_{+})^{N-N_{+}}$$
$$P(N, N_{-}) = {\binom{N}{N_{-}}} \cdot p_{-}^{N_{-}} \cdot (1 - p_{-})^{N-N_{-}}$$

Proper normalization of probability \rightarrow Binomial Theorem

$$\sum_{N_{+}=0}^{N} P(N, N_{+}) = \sum_{N_{+}=0}^{N} \binom{N}{N_{+}} \cdot p_{+}^{N_{+}} \cdot p_{-}^{N_{-}N_{+}}$$
$$= \left(p_{+} + p_{-}\right)^{N} = 1$$

10

Transport

Expectation Values (& Probability Moments)

Expectation values of m^k , examples k = 1(average) k = 2(variance)

$$\left\langle \boldsymbol{m}^{k}\right\rangle = \sum_{N_{+}=0}^{N} \boldsymbol{m}^{k}\left(\boldsymbol{N}_{+}\right) \cdot \boldsymbol{P}(\boldsymbol{N},\boldsymbol{N}_{+}) = \sum_{N_{+}=0}^{N} \binom{N}{N_{+}} \cdot \boldsymbol{m}^{k}\left(\boldsymbol{N}_{+}\right) \cdot \boldsymbol{p}_{+}^{N_{+}} \cdot \boldsymbol{p}_{-}^{N-N_{+}}$$

Express m^k as a function of N and N_+ , example for $p_+ = p_= = 1/2$

$$m \rangle = \sum_{N_{+}=0}^{N} \left(2N_{+} - N \right) \cdot P(N, N_{+}) = -N + 2 \cdot \sum_{N_{+}=0}^{N} N_{+} \cdot \begin{pmatrix} N \\ N_{+} \end{pmatrix} \cdot p_{+}^{N} = 0$$

$$\sqrt{m} \rangle = 0$$

$$\begin{array}{l}
Proof: \\
\sum_{N_{+}=0}^{N} \frac{N_{+} \cdot N!}{(N_{+})! (N - N_{+})!} p_{+}^{N} = p_{+} \cdot N \cdot \sum_{N_{+}=1}^{N} \frac{(N - 1)!}{(N_{+} - 1)! ((N - 1) - (N_{+} - 1))!} \cdot p_{+}^{N-1} = \frac{N}{2} \\
\end{array}$$
First term=0
$$\begin{array}{l}
Valid because \sum_{\overline{N_{+}=0}}^{\overline{N}} \frac{\overline{N}!}{(\overline{N_{+}})! (\overline{N} - \overline{N_{+}})!} \cdot p_{+}^{\overline{N}} = 1
\end{array}$$

Use this method to calculate higher orders, e.g. $\langle N_{+}^{2} \rangle$ etc.

Expectation Values (& Probability Moments)

Expectation values of m^k , examples k = 1(average) k = 2(variance) $\left\langle m^k \right\rangle = \sum_{N_+=0}^{N} m^k \left(N_+ \right) \cdot P(N, N_+) = \sum_{N_+=0}^{N} \binom{N}{N_+} \cdot m^k \left(N_+ \right) \cdot p_+^{N_+} \cdot p_-^{N_-N_+}$

Similar for variance in $m(= range of final m(t_N) values)$ Use $m \leftrightarrow N_+$

$$\sigma_m^2 = \langle m^2 \rangle - \langle m \rangle^2 = \langle (2N_+ - N)^2 \rangle - 0 = \langle 4N_+^2 - 4N_+N + N^2 \rangle = ??$$

Since
$$p_{+} = p_{-} = 1/2 \rightarrow \langle N_{+} \rangle = N/2$$
 and $\sigma_{N_{+}}^{2} = Np_{+}p_{-} = N/4$
 $\Rightarrow \sigma_{m}^{2} = 4 \langle N_{+}^{2} \rangle - 4N \langle N_{+} \rangle + N^{2} = 4 \langle N_{+}^{2} \rangle - 8 \langle N_{+} \rangle \langle N_{+} \rangle + 4 \langle N_{+} \rangle^{2} = 4 (\langle N_{+}^{2} \rangle - \langle N_{+} \rangle^{2}) = 4 \sigma_{N_{+}}^{2}$

Variance $\sigma_m^2 = N$ Standard Deviation $\sigma_m = \sqrt{N}$

Relative spread in asymptotic m values decreases with N:

$$\frac{\sigma_m}{N} = \frac{1}{\sqrt{N}}$$

Determined 2 moments (mean & var.) of the probability distribution → What is its shape, e.g., "normal"? How frequent are rare events?

W. Udo Schröder 2025

Limit: Poisson Probability Distribution

 $P_{binomial}(N,m;p) = {\binom{N}{m}} p^m (1-p)^{N-m} \bigtriangleup Lim_{p\to 0,N\to\infty} P_{binomial}(N,m) = P_{Poisson}(\mu,m)$ Probability for observing a number *m* of rare events of interest in period Δt , when the average #events per period Δt is known: $\mu = \langle m \rangle = N \cdot p$ Individual $p \ll 1$ but $N \gg 1$ trials (attempts) $\rightarrow N \cdot p > 0 \leftarrow$ determines distribution

$$P_{Poisson}(\mu,m) = \frac{\mu^m \cdot e^{-\mu}}{m!} \begin{bmatrix} \sigma_m^2 = N \cdot p \cdot (1-p) \\ \sigma_m^2 \approx \mu \end{bmatrix}$$

Example : rare # statistical decays $[\Delta t^{-1}]$ $p = \frac{\dot{N}}{N} \ll (1/\Delta t) \rightarrow \sigma_m^2 \approx \langle m \rangle \# counts$

Observe transition Poisson \rightarrow Gaussian "Normal" Can prove rigorously

$$\lim_{\substack{p \to 1 \\ N \gg 1}} P_{bin}(N,m,p) = \frac{1}{\sqrt{2\pi\sigma_m^2}} \cdot \exp\left\{-\frac{\left(x - \langle m \rangle\right)^2}{2\sigma_m^2}\right\}$$

Extensions & Generalizations of RW Model

Associate an actual spatial degree of freedom (x) with the 1D string of cells **m**: Step size $\Delta x \sim \Delta m \rightarrow x = m \cdot x$. Results of 1D random Walk back and forth on x, starting from $x_0 \triangleq m_0$, is a distribution of positions x along the trajectory:

Mean position
$$\langle x \rangle = x_0 + \langle m \cdot \Delta x \rangle$$
 and Variance $\sigma_x^2 = \sigma_m^2 \cdot (\Delta x)^2 = N \cdot (\Delta x)^2$

The trajectory covers a region from x_0 to x_0+x_{rms} characteristic root-mean-square x_{rms}

$$X_{rms} = \sqrt{\langle X^2 \rangle} = \sqrt{N} \cdot \Delta X$$

Large numbers $N \gg 1$ of RW steps @ finite probability p , <u>binomial \rightarrow Gaussian</u>:

$$P_{N}(m) = \frac{1}{\sqrt{2\pi N}} \cdot \exp\left\{-\frac{\left(m - m_{0}\right)^{2}}{2N}\right\} \bigoplus P_{N}(x) = \frac{1}{\sqrt{2\pi N} \cdot \left(\Delta x\right)^{2}} \cdot \exp\left\{-\frac{\left(x - x_{0}\right)^{2}}{2N \cdot \left(\Delta x\right)^{2}}\right\}$$

1D formalism \rightarrow 3 or more independent degrees of freedom, e.g., $x \rightarrow \{x, y, z\}$ \rightarrow simultaneous probability = product of independent probabilities:

$$P(x,y,z) = P(x) \cdot P(y) \cdot P(z)$$

ranspor.