
Agenda: Kinetics and Transport in Multiparticle Systems

Dynamics of interacting multi-particle systems 

• Interaction energies
Dissipation & randomization via multiple scattering

• Probabilistic evolution 
Random walk and binomial distribution
Diffusion/Fokker-Planck processes (Master Equation)

 Fluctuating (Langevin) dissipative forces
 Maxwell-Boltzmann equilibrium energy distributions

• Kinetics of dilute gases
Fundamental “Ideal Gas” laws, Equation of state (EoS)
Work and heat transfer 

 Flow of heat and radiation
 Laws of thermodynamics, thermodynamic ensembles

Reading 

Assignments

Weeks 3 &4

LN III.1-III.3: 

Kondepudi Ch. 1,3,7 

Additional Material

McQuarrie & Simon 

Ch. 3.1 -3.4

Math Chapter(s) 

             MC E 



Motivation: Practical Importance  of Transport Phenomena

Dissipation (friction, viscosity) and Equilibrium Phenomena, understanding 
equilibrium=stationary states of matter. Analytical tool for basic physics & 
technology, e.g., material science. 

• Brownian particle motion on surfaces & in space: gases, liquids, and 
solids, incl. organic materials
Biology, Medicine, Semiconductor industry, 

• Diffusion and mixing of gases
in gases like air→ practical applications, smell, toxic gases, Climate CO2 

atmosphere, DAC CO2, transport in gaseous plasmas

• Diffusion of gases in liquids (glasses, plastics)
gas in liquids: acidification of ocean water, environment, climate
DAC CO2

• Diffusion & permeation of gases in solids: chemical industry, reactors
Hydrogen economy, nuclear energy, fusion reactors, isotopic separation

• Diffusion of liquids in liquids
Mixing industrial fluids, pollution of rivers, lakes, ground water

• Diffusion of liquids in solid matrices
Chemical industry, contamination of toxic waste in soil, corrosion 
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Atomic Potential Interacting Energies

Multi-Particle Systems :  ≥6∙N dof

Lennard-Jones potential: Attractive (< 0) 

at intermediate & large distances, 
repulsive ( 0) at small distances
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Energy Transfer & Dissipation in Multiple Interactions

Scattered projectiles leave the lattice at very different final speeds and 
directions, depending on the initial conditions (impact parameter)

Collisions with unbound gas particles are even “more random” than collisions 
with a periodic solid-sate lattice structure.

Impact 
Parameter

   b

Incident
Projectiles

A stationary lattice of massive (M), 
chemically bound atoms or ions at rest 
is hit by fast projectiles, particles or 
photons (m « M). 

Depending on how and where the first 
few lattice particles are hit, a few 
collisions and their momentum and 
energy transfer change drastically. 
Small changes in b cause very different 
trajectories (chaotic dynamics). 
Energetic disturbance travels and 
disperses through lattice. 

../assets/VIDEOS/Lattice_Scattering.avi
../assets/VIDEOS/Lattice_Scattering.avi


Randomization via Multiple Interactions

Scattered projectiles leave the lattice at very different final speeds and 
directions, depending on the initial conditions (impact parameter)

Collisions with unbound gas particles are even “more random” than collisions 
with a periodic solid-sate lattice structure.

A stationary lattice of massive (M), 
chemically bound atoms or ions at rest 
is hit by fast projectiles, particles or 
photons (m « M). 

Depending on how and where the first 
few lattice particles are hit, a few 
collisions and their momentum and 
energy transfer change drastically. 
Small changes in b cause very different 
trajectories (chaotic dynamics). 
Energetic disturbance travels and 
disperses through lattice. 



Binary Random Walk (RW)

Configuration (state) space of a system is approximated by a 1-dimensional lattice of 

equal cells x=m=±1. (Simple to extend to 3-D and n-D)

Scenario: 2 discrete properties for discrete t-evolution (Yor N; L or R; ….)

  Time ti→ti+1 transition rule: each cell m→ m±1 .

Time evolution of CA modeled in discrete time steps→generations.

Evolution @ probabilistic rule: probabilities p- and p+ with p-+p+ =1

Initial cell @ m(t1) = 0 → Consider RW “trajectory”  p-=p+ =1/2 ; 

N = total number of steps, with N+ to the right, N- steps to the left.
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1D Random Walk Automaton

m= -1 m=0 m=+1

m= -1 m=0 m=+1

+
p( )− +

= −p 1 p

Question: How to change procedure to admit m=0→m=0?

3D Random Walk



Deterministic vs. Probabilistic Propagation Protocols
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Binary Random Walk (Unbiased)

Equal probabilities per step  p-=p+=1/2  
Let RW evolve over some time = total 
number of steps = N 1.
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For a given trajectory, what is actual final position m=m(tN) after N steps ?

Cannot be answered precisely, since this is not a deterministic process, but … 

Equal probabilities  → Averaged over

entire history = trajectory: 
 

0
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Final position m (after N steps) of trajectory is determined by the simple 
difference in # of left vs. right steps, since p-=p+=1/2. For p-≠p+ , left and 
right step numbers must be weighted by corresponding probabilities. 
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Binary Random Walk (on a Lattice)

Equal probabilities per step  p-=p+=1/2  
Let RW evolve over some time = total number of steps = N 1.
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How to calculate probability that a random trajectory stating at m=0 @t0 will 
end up populating m(tN)?  
→ Count # of all trajectories with N steps that lead from m(t0)=0 → m(tN). 
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Binomial Probability Distribution

Arbitrary Lvs.R (binomial) probabilities p-+p+=1. RW evolves for N 1 steps.
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The probability for a random trajectory to land at position m = N+-N- after N 
steps in directions with associated individual probabilities p-+p+=1 is given by 
the binomial distribution in N+ (or N-) 
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Expectation Values (& Probability Moments)
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Expectation Values (& Probability Moments)

Relative spread in asymptotic m values decreases with N:  
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Limit: Poisson Probability Distribution
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when the average #events per period t is known:  =<m>= N·p 
Individual p 1 but N  trials (attempts) → N·p >0  determines distribution

Distributions P(m) → Gaussian 

p=0.1-0.3 and N~50
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Extensions & Generalizations of RW Model

Associate an actual spatial degree of freedom (x) with the 1D string of cells m: 
Step size x~m → x=m·x. Results of 1D random Walk back and forth on x, 
starting from x0 m0, is a distribution of positions x along the trajectory:
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