Agenda: Complex Processes in Nature and Laboratory

Systems and dynamics, qualifiers Examples (climate, planetary motion),

Order and Chaos, determinism and stochastic unpredictability 1D dynamics: phase space curves/orbits

Non-linear dynamics in nature and their modeling Mathematical model (logistic map, climate,....) Stability criteria, stationary states

Self organizing (cooperative) processes & resulting structures Self-organization/replication in coupled chemical rxns Cellular automata and fractal structures

Dynamics of interacting multi-particle systems Interaction energies Random walk and diffusion, Fluctuating (Langevin) forces Boltzmann molecular chaos Reading Assignments Weeks 2&3 LN 1.5-1-6: Complex processes

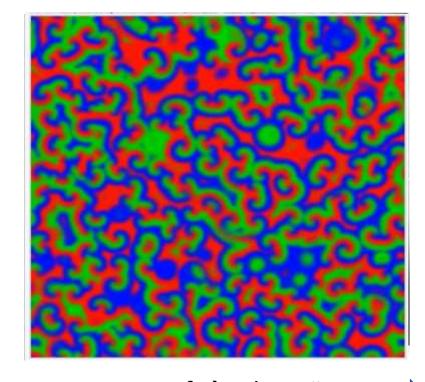
Kondepudi Ch.19 Additional Material J.L. Schiff: Cellular Automata, Ch.1, Ch. 3.1-3.6

McQuarrie & Simon Math Chapters MC B, C, D,

Cooperative Belousov-Zhabotinski (BZ) Reaction

Oxidation of malonic acid with cerium bromate, $CeBr_3$ (Kondepudi&Prigogine Ch. 19) $2BrO_3^-+3CH_2(COOH)_2+2H^+ \rightarrow 2BrCH(COOH)_2+3CO_2+4H_2O$

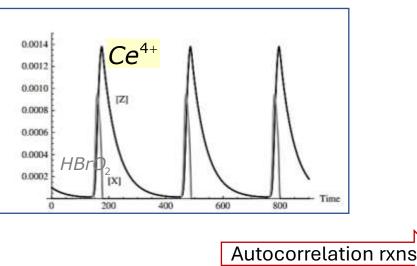
 \rightarrow Spatially correlated colored traveling domain patterns on reactor surface.



Ce³⁺→Ce⁴⁺ oscillations Similar oscillations: Lotka-Volterra Cmpl. Sys. Dyn. wSee computer codes in Kondepudi Ch. 19 *Ce* = catalyst, [*Ce*] ≈ const., but oscillations between Ce^{3+} and Ce^{4+} , \rightarrow alternating colors.

Intermediate reaction step

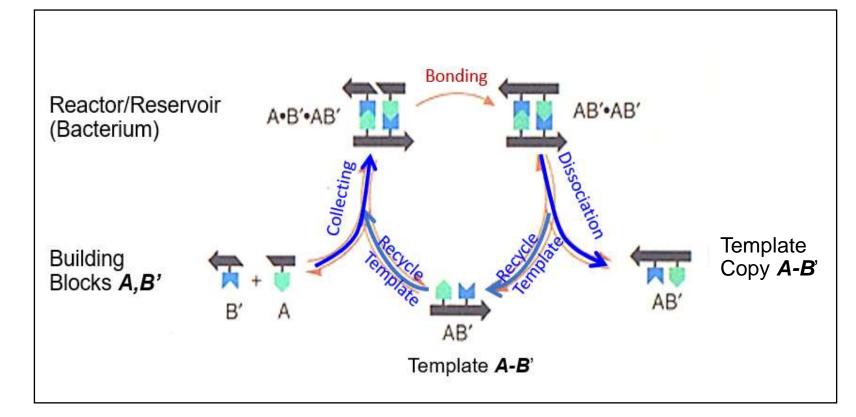
 $BrO_2^{\bullet} + Ce^{3+} + H^+ \rightarrow HBrO_2 + Ce^{4+}$ (Radical)



 \sim

Autocatalytic Self-Replication: Schematic

Autocatalytic self-replication with a template: Cycle attracts & combines separate **building blocks** *A* & *B*' available in environment (Reservoir) on a molecular template, dissociates template from its identical copy. Then re-cycles 2 templates in next cycle.

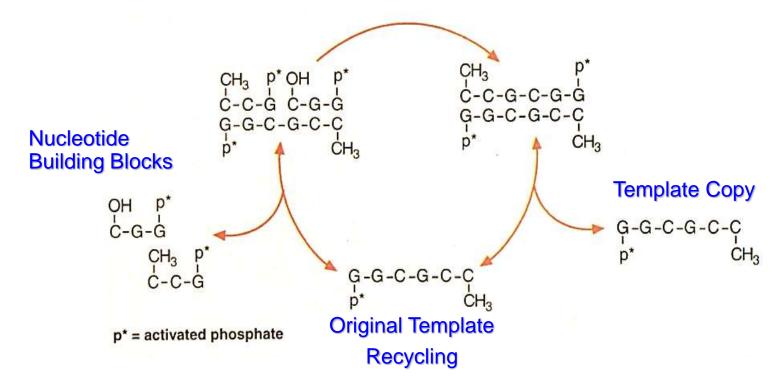


Each cycle makes another template copy $\Delta N / \Delta n = \lambda \cdot N(n) \rightarrow$ exponential growth in numbers, inhibits/overpowers other competing processes.

Ь

Autocatalytic Self-Replication: Complementary Base-Pairing

DNA template = palindromic (left-right self-complementary)



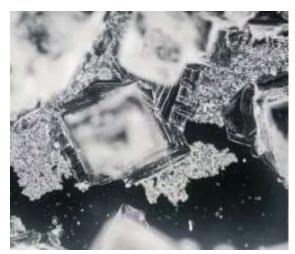
Use 2 nucleotide trimers to align and pair with hexa-DNA template, bind the two trimers \rightarrow bound hexamer on template \rightarrow Recover original template plus one copy.

Self-similar growth & fractal structures

9

Replication & Self-Similar Complexity

Manganese dendrites on limestone



Precipitate from saturated solution

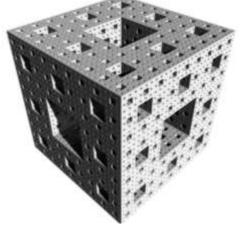
Cooperative replication processes and structures to which they lead

- self-organizing = (quasi-) orderly (predictable) behavior,
- co-operative growth can produce fractal structures,
- Only in the large amplitude limit (which?) complete disorder/chaos

Examples:

- Crystallization,
- Turbulence in fluids,
- Biological life (stem cells), morphology, ageing,
- Forest fire propagation,
- Urban areal development with population growth,
- Flow patterns of electrical currents in a power grid,

Menger Cube $d_{H}=2.72$

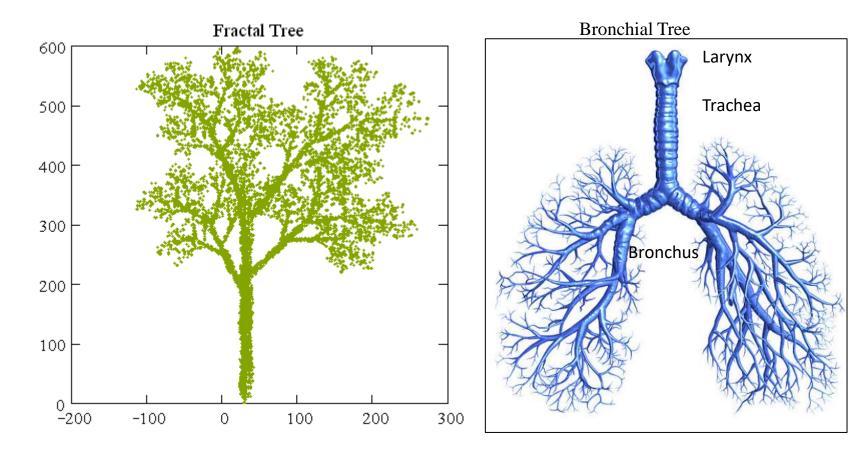


• Behavior of gas and liquids, diffusion, convection,

σ

Compl SysDyn W. U. Schröder 2025

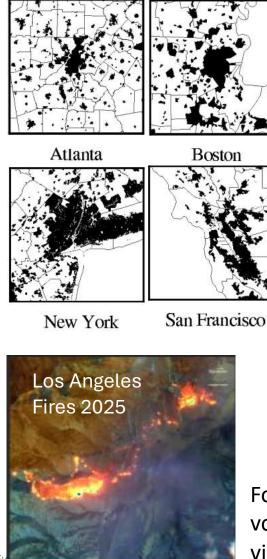
Self-Replication Causes Self-Similar Fractal Structures



Self – Similar Dynamics produces structures that repeat at different Scales *Example*: Spatial correlation = distance $|\vec{r_1} - \vec{r_2}|$ $\left| D_n \left(\vec{r}_1, \vec{r}_2 \right) = G_n \cdot \right.$ Length scaling factor L_n or $L(t_n)$

Compl SysDyn W. U. Schröder 2025

Urban Growth Patterns and Forest Fires



Correlation between population size of 20 U.S. cities and occupied urban area.

Guoqiang Shen, Int. J. Geogr. Inf. Sci., 16, 419 (2002)



Forests have fractal geometry: Obvious appearance plus volume of combustible materials is related to surface area via fractal dimension \rightarrow spread of forest fires.

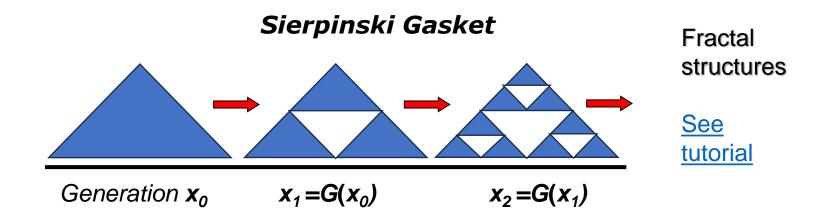
Compl

11

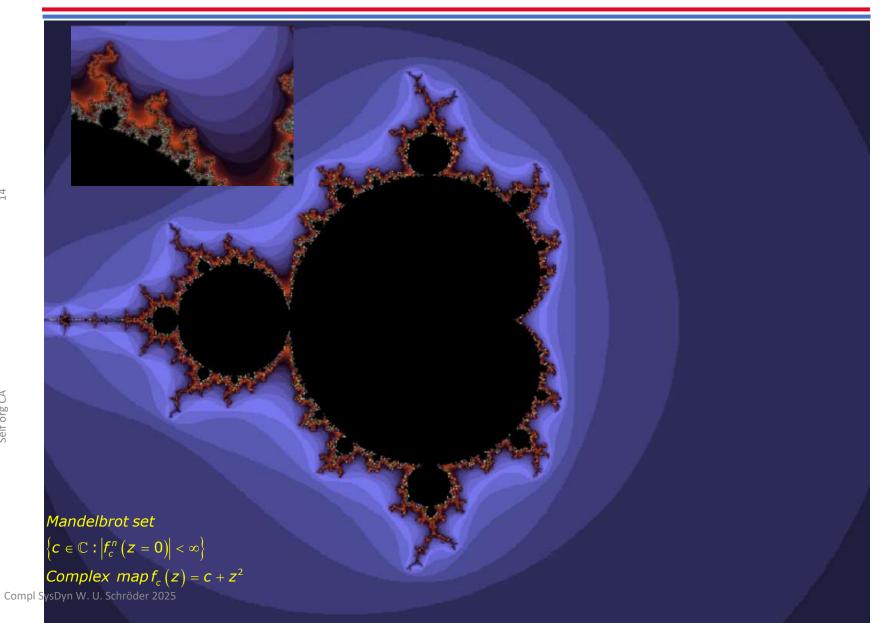
Represent replication structure by set of rules: Simples case rule \rightarrow function **G**, "Parent" = Object $\mathbf{x} = \mathbf{x}_0$ starting series 3-fold division \rightarrow 3 descendants $\mathbf{x}_1 = \mathbf{G}(\mathbf{x}_0) = 3$ copies of \mathbf{x}_0 @ 1:3 scale

Possible transformation (scaling, translation, ...) \rightarrow Self-Similar Structures

$$\boldsymbol{x}_n = \boldsymbol{G}^n(\boldsymbol{x}_0) = \boldsymbol{G}(\boldsymbol{x}_{n-1}) = \boldsymbol{G}[\boldsymbol{G}(\boldsymbol{x}_{n-2})] = \boldsymbol{G}\{\boldsymbol{G}[\boldsymbol{G}(\boldsymbol{x}_{n-3})]\} \rightarrow \boldsymbol{M}\boldsymbol{a}\boldsymbol{p}$$



Fractal Mandelbrot Set



Agenda: Complex Processes in Nature and Laboratory

Systems and dynamics, qualifiers Examples (climate, planetary motion),

Order and Chaos, determinism and stochastic unpredictability 1D dynamics: phase space curves/orbits

Non-linear dynamics in nature and their modeling Mathematical model (logistic map, climate,....) Stability criteria, stationary states

Self organizing (cooperative) processes & resulting structures Self-organization/replication in coupled chemical rxns Cellular automata and fractal structures

Next

Dynamics of interacting multi-particle systems Molecular interaction energies Random walk and diffusion, Fluctuating (Langevin) forces Boltzmann molecular chaos, gas laws Reading Assignments Weeks 2&3 LN 1.5-1-6: Complex processes

Kondepudi Ch.19 Additional Material J.L. Schiff: Cellular Automata, Ch.1, Ch. 3.1-3.6

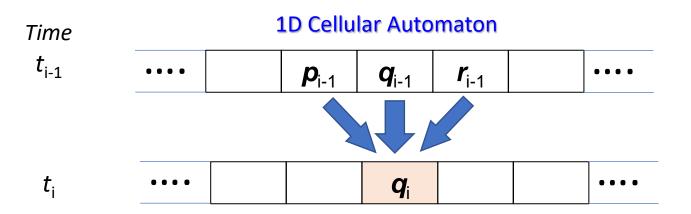
McQuarrie & Simon Math Chapters MC B, C, D,

Modeling Self Replicating Processes

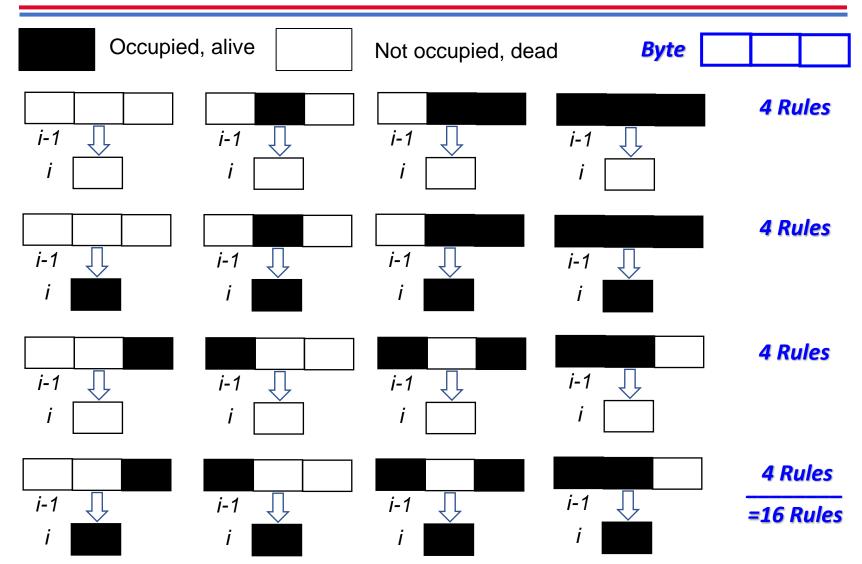
- Cellular automata (CA) are used in many fields, including physics, biology, and social science. They are computational models that simulate how patterns evolve over time
- Cellular automata have found applications in traffic modeling, with the Nagel-Schreckenberg model being a well-known example (Nagel & Schreckenberg, 1992). They have also been used to model social dynamics, epidemics, and other complex phenomena (Bagnoli, 2005).
- A CA is a collection of colored cells or atoms on a grid of a specified shape. Each cell is in one of a finite number of states. This computational model is both abstract and spatially and temporally discrete.
- There are many types of CA. The simplest type is a binary, nearest-neighbor, onedimensional automaton called elementary cellular automata. There are 256 such CAs.
- Diffusion, corrosion, epidemics
- Cellular Automata are discrete computational systems consisting of cells that evolve in parallel at discrete time steps, inspired by self-reproducing living organisms. They are used as models of complexity, for studying nonlinear dynamics, and can compute functions and solve algorithmic problems through local interactions.
 Cellular Automata-Based Modeling of Three-Dimensional Multicellular Tissue
 Growth, B. Ben Youssef

CA Concept

- The configuration (state) space of a system is approximated by an ndimensional lattice of equal cells.
- Each cell has a finite number of discrete properties.
- Time evolution of CA system occurs (can be modeled) in discrete time steps → generations.
- Evolution occurs to (a set of) strict deterministic rules.
- Evolution rules reference exclusively states of neighboring cells, reflect local environment.



Classification of Propagation Rules



Classification of Propagation Rules

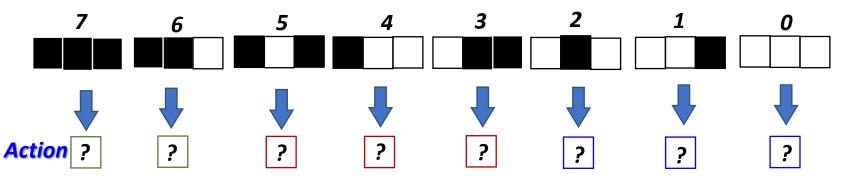
Not oc

Not occupied, dead

Byte

Rearrange byte pattern in ascending order: bytes ordered in binary sequence

Condition of survival of a cell depends on the states of its own past and that of its two neighbors' past \rightarrow depends on the past state of a triplet of 3 cells (=byte).



8 possible occupation patterns ($\triangleq 0, 1, 2, 3, 4, 5, 6, 7$) for each byte.

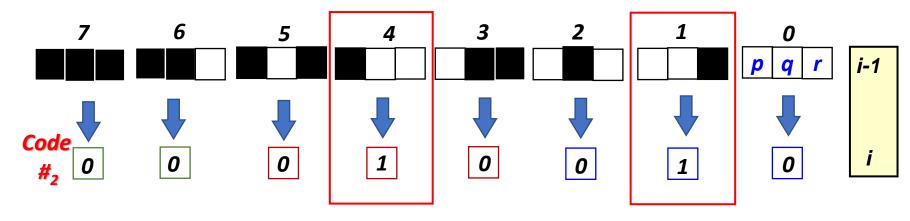
Any pattern in any one of them & **any valid combination**, could produce an alive (= **1**) cell or a dead (= **0**) cell in the following time iteration step.

For 8 bytes, there are obviously 256 (0-255) possible conditions for an action (alive/dead). Complex preconditions for an action (0, 1) are defined by any combination (logic OR) of possible rules $f_{npl s}$ (represented by the set of all numbers 0,, 255).

Classification of Propagation Rules

Rearrange byte pattern in ascending order: bytes ordered in binary sequence

Condition of survival of a cell depends on the states of its own past and that of its two neighbors' past \rightarrow depends on the past state of a triplet of 3 cells (=byte).

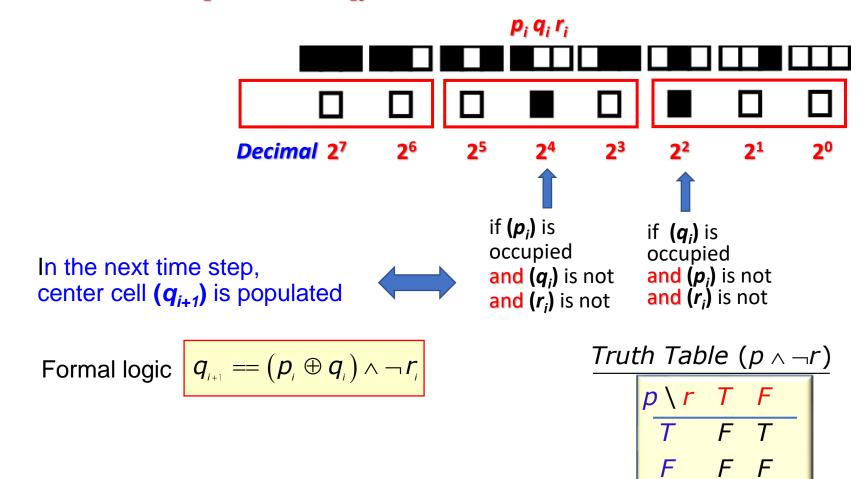


Implies live for the cell in the next time step, if it the cell was **previously unoccupied and** had only one alive neighbor on the left or on one on the right, **but not on both sides**.

Propagation pattern Code $\#_{\text{binary}} = 10010_2 = (2^4 + 2^1) = 18_{10}$ $\rightarrow \overline{q_i} = (p_{i-1} \oplus r_{i-1}) \land (\neg q_{i-1})$

21

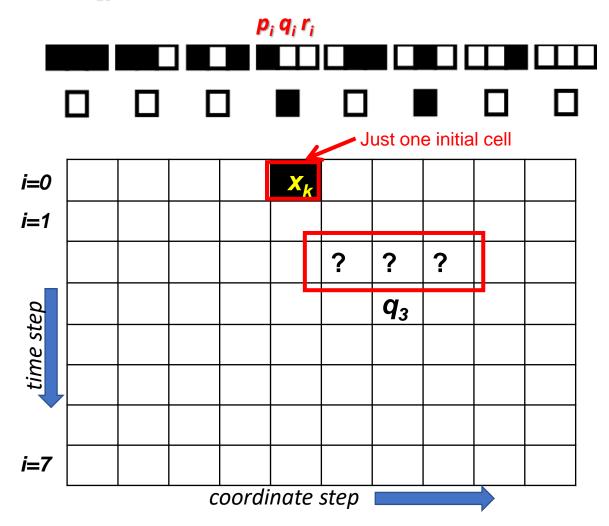
CA code $\# = 10100_2 = (2^4 + 2^2) = 20_{10}$



 $CA \ code \ \# = 10100_2 = (2^4 + 2^2) = 20_{10}$

Procedure

- Draw grid
 x (k) vs. time (i)
- Load initial conditions, pattern x_k(i=0)
- Derive pattern
 x_k(i=1) from
 population of
 triplet
 - {**x**_{k-1}, **x**_k, **x**_{k+1},} at (*i=0*)
- 4. Next row *i*.....
 5. For self
 - replication, keep history

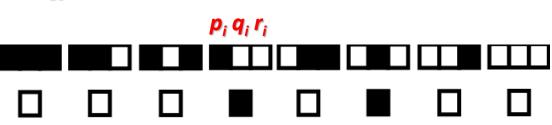


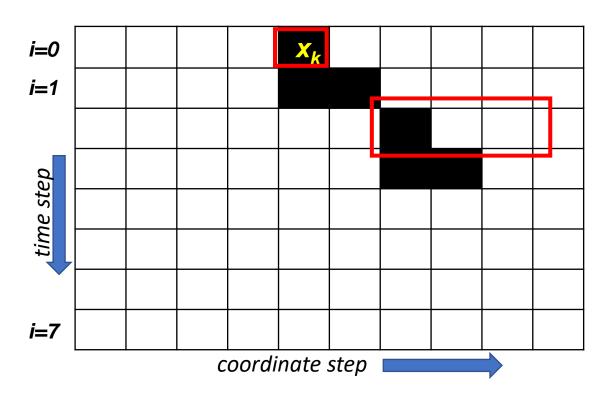
CA code $\# = 10100_2 = (2^4 + 2^2) = 20_{10}$

Procedure

- Draw grid
 x (k) vs. time (i)
- Load initial conditions, pattern x_k(i=0)
- Derive pattern
 x_k(i=1) from
 population of
 triplet
 - {**x**_{k-1}, **x**_k, **x**_{k+1},} at (*i***=0**)
- 4. Next row *i*.....
 5. For self-

replication, keep history



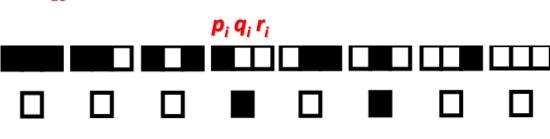


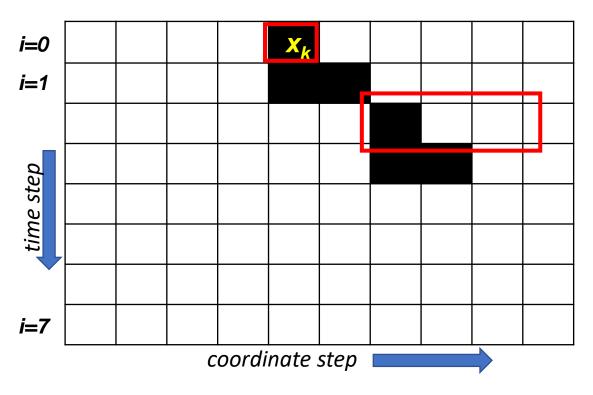
CA code $\# = 10100_2 = (2^4 + 2^2) = 20_{10}$

Procedure

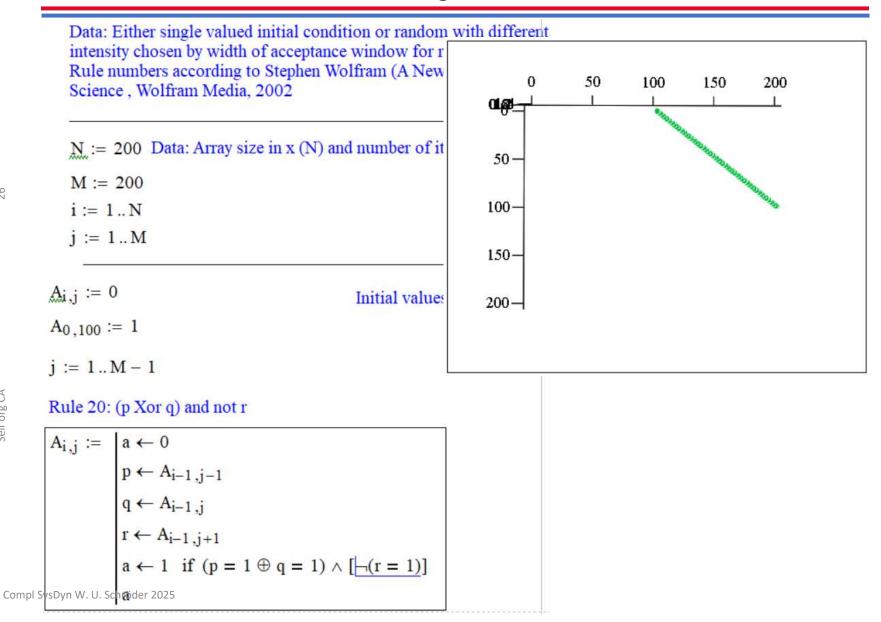
- Draw grid
 x (k) vs. time (i)
- Load initial conditions, pattern x_k(i=0)
- Derive pattern
 x_k(i=1) from
 population of
 triplet
 - {**x**_{k-1}, **x**_k, **x**_{k+1},} at (*i***=0**)
- 4. Next row *i*.....
 5. For self-

replication, keep history





Coding CA#20



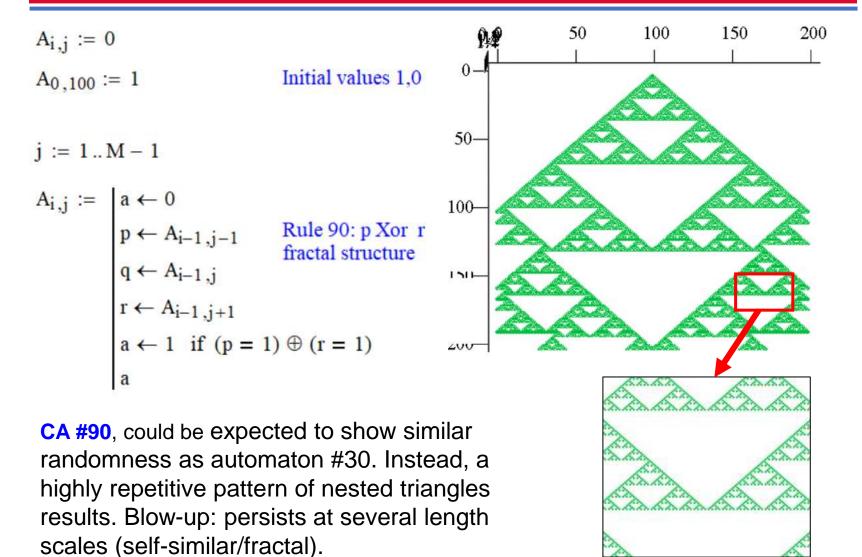
Coding CA#30

 $A_{i,j} := 0$ Initial values 1,0 + $A_{0,100} := 1$ i := 1 ... M - 1Rule 30: p Xor (q or r) random $\begin{array}{lll} A_{i,j} \coloneqq & a \leftarrow 0 \\ p \leftarrow A_{i-1,j-1} \\ q \leftarrow A_{i-1,j} \\ r \leftarrow A_{i-1,j+1} \\ a \leftarrow 1 & \text{if } p = 1 \oplus (q = 1 \lor r = 1) \end{array}$ a CA #30, with one more condition. More complex pattern. Repetitive fine structure is observed at the rim of the triangle and upon blowup.

27

Compl SysDyn W. U. Schröder 2025

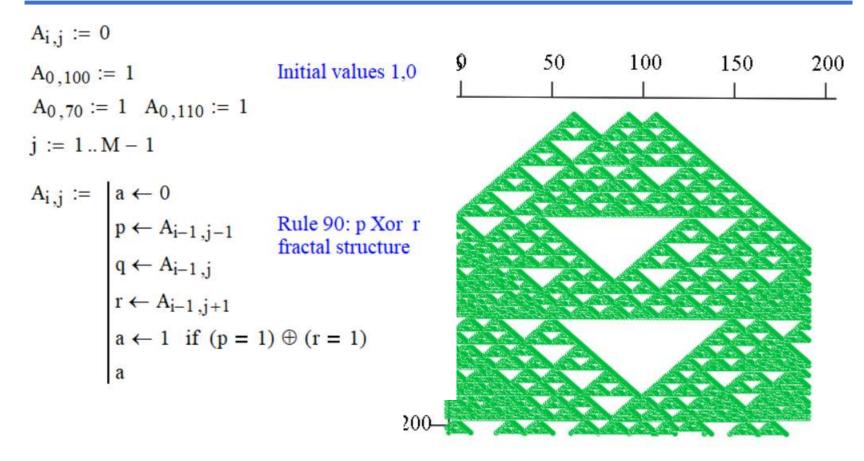
Coding CA#90 Specific IC



28

Compl SysDyn W. U. Schröder 2025

Coding CA#90 Specific Initial Conditions



CA #90, with **3 initial cells populated**. Fractal structure is modified but persists.

29

Coding CA#90 Random IC

 $A_{0,j} := 0$ Random initial values 1,0 if rnd(1) > 0.51 j := 1 ... M - 1Rule 90: p Xor r fractal structure $a \leftarrow 1$ if $(p = 1) \oplus (r = 1)$ a CA #90, with random population of 50% of initial cells. Specific fractal structure is washed out, additional pattern appears on larger length scale.

Approximates Random chaos

Summary

CA research: 4 classes of automata,

- Class 1 reaches a homogeneous state (all cells free) after a few initial steps.
- Class 2 shows a periodic pattern after the first few steps, relatively independent of initial conditions.
- Class 3 develops into a chaotic pattern, independent of initial conditions.
- Class 4 produces a highly complex, nested fractal pattern.

Very specific, simple, localized microscopic interactions of coupled systems can lead to highly organized structure.

Pronounced fractal structure emerges from localized initial conditions (seeds).

Spread-out initial state conditions lead to washed out structures or chaos.

Because of their specific (unusual) geometrical shape (surface/volume), Class-4

CAs have functionality important for live, biomed and general technology.

31