
Agenda: Complex Processes in Nature and Laboratory

Systems and dynamics, qualifiers
 Examples (climate, planetary motion), 

Order and Chaos, determinism and stochastic unpredictability
 1D dynamics: phase space curves/orbits

Non-linear dynamics in nature and their modeling
 Mathematical model ( logistic map, climate,…..)
 Stability criteria, stationary states

Self organizing (cooperative) processes & resulting structures 
 Self-organization/replication in coupled chemical rxns
 Cellular automata and fractal structures

Dynamics of interacting multi-particle systems
 Interaction energies
 Random walk and diffusion, 
 Fluctuating (Langevin) forces
 Boltzmann molecular chaos 

Reading Assignments
 Weeks 2&3
LN I.5-I-6: Complex 
processes

Kondepudi Ch.19 
Additional Material
J.L. Schiff: 
Cellular Automata, 
      Ch.1, Ch. 3.1-3.6

McQuarrie & Simon 
Math Chapters 
                MC B, C, D, 



Cooperative Belousov-Zhabotinski (BZ) Reaction

Cmpl. Sys. Dyn. W. U. Schröder, 2025
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Oxidation of malonic acid with cerium bromate, CeBr3   (Kondepudi&Prigogine Ch. 19)

Ce = catalyst, [Ce] ≈ const., but 
oscillations between Ce3+ and Ce4+, 
→ alternating colors. 

Intermediate reaction step
• + + ++ + → +3 4

2 2
BrO Ce H HBrO Ce

→ Spatially correlated colored traveling domain patterns on reactor surface.

4Ce +

2
HBrO

Ce3+
→Ce4+ oscillations

Similar oscillations: Lotka-Volterra
See computer codes in Kondepudi Ch. 19

2BrO3
-+3CH2(COOH)2+2H+

→ 2BrCH(COOH)2+3CO2+4H2O

Autocorrelation rxns

(Radical)



Autocatalytic Self-Replication: Schematic
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Autocatalytic self-replication with a template: Cycle attracts & combines separate 

building blocks A & B’ available in environment (Reservoir) on a molecular template, 

dissociates template from its identical copy. Then re-cycles 2 templates in next cycle. 

Template 
Copy A-B’

Each cycle makes another template copy  → exponential growth 

in numbers, inhibits/overpowers other competing processes. 
( )N n N n  = 



Autocatalytic Self-Replication: Complementary Base-Pairing 
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Use 2 nucleotide trimers to align and pair with hexa-DNA template, bind 
the two trimers → bound hexamer on template → Recover original 
template plus one copy.

Nucleotide 
Building Blocks

Template Copy

Original Template

Recycling

DNA template = palindromic (left-right self-complementary)

Self-similar growth & fractal structures



Replication & Self-Similar Complexity

Examples:

• Crystallization,

• Turbulence in fluids,

• Biological life (stem cells), 
morphology, ageing,

• Forest fire propagation,

• Urban areal development 
with population growth,

• Flow patterns of electrical 
currents in a power grid, ….

• Behavior of gas and liquids, diffusion, convection,
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Cooperative replication processes and structures 

to which they lead

▪ self-organizing = (quasi-) orderly (predictable) 

behavior, 

▪ co-operative growth can produce fractal 

structures,

▪ Only in the large amplitude limit (which?) 

complete disorder/chaos

Precipitate from saturated solution

Manganese dendrites on limestone Menger Cube dH=2.72



Self-Replication Causes Self-Similar Fractal Structures
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Bronchial Tree
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Self Similar Dynamics produces structures that repeat at different Scales
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Urban Growth Patterns and Forest Fires 

Compl SysDyn W. U. Schröder 2025

Se
lf

 o
rg

 C
A

1
1

Guoqiang Shen, Int. J. Geogr. Inf. Sci., 16, 419 (2002) 

Los Angeles 
Fires 2025

Correlation between population size of 20 U.S. cities 
and occupied urban area.

Forests have fractal geometry: Obvious appearance plus 
volume of combustible materials is related to surface area 
via fractal dimension → spread of forest fires.



Mathematics of Self-Replication

Represent replication structure by set of rules:

Simples case rule → function G, “Parent” = Object x = x0  starting series  

3-fold division ➔3 descendants x1 = G(x0) = 3 copies of x0 @ 1:3 scale  

 
Possible transformation (scaling, translation, …) → Self-Similar Structures

   xn = G n(x0) = G(xn-1) = G[G(xn-2)] = G{G[G(xn-3)]} → Map
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Sierpinski Gasket

Generation x0     x1 =G(x0)                 x2 =G(x1)

Fractal 

structures

See 

tutorial

../Fractal_Dim_Tutorial.pdf
../Fractal_Dim_Tutorial.pdf


Fractal Mandelbrot Set
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Agenda: Complex Processes in Nature and Laboratory

Systems and dynamics, qualifiers
 Examples (climate, planetary motion), 

Order and Chaos, determinism and stochastic unpredictability
 1D dynamics: phase space curves/orbits

Non-linear dynamics in nature and their modeling
 Mathematical model ( logistic map, climate,…..)
 Stability criteria, stationary states

Self organizing (cooperative) processes & resulting structures 
 Self-organization/replication in coupled chemical rxns
 Cellular automata and fractal structures

Next
Dynamics of interacting multi-particle systems
 Molecular interaction energies
 Random walk and diffusion, 
 Fluctuating (Langevin) forces
 Boltzmann molecular chaos, gas laws 

Reading Assignments
 Weeks 2&3
LN I.5-I-6: Complex 
processes

Kondepudi Ch.19 
Additional Material
J.L. Schiff: 
Cellular Automata, 
      Ch.1, Ch. 3.1-3.6

McQuarrie & Simon 
Math Chapters 
                MC B, C, D, 



Modeling Self Replicating Processes

• Cellular automata (CA) are used in many fields, including physics, biology, and social 
science. They are computational models that simulate how patterns evolve over time

• Cellular automata have found applications in traffic modeling, with the Nagel-
Schreckenberg model being a well-known example (Nagel & Schreckenberg, 1992). 
They have also been used to model social dynamics, epidemics, and other complex 
phenomena (Bagnoli, 2005).

• A CA is a collection of colored cells or atoms on a grid of a specified shape. Each cell is 
in one of a finite number of states. This computational model is both abstract and 
spatially and temporally discrete.

• There are many types of CA. The simplest type is a binary, nearest-neighbor, one-
dimensional automaton called elementary cellular automata. There are 256 such CAs.

• Diffusion, corrosion, epidemics

• Cellular Automata are discrete computational systems consisting of cells that evolve 
in parallel at discrete time steps, inspired by self-reproducing living organisms. They 
are used as models of complexity, for studying nonlinear dynamics, and can compute 
functions and solve algorithmic problems through local interactions.
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Cellular Automata-Based Modeling of Three-Dimensional Multicellular Tissue 
Growth, B. Ben Youssef



CA Concept

• The configuration (state) space of a system is approximated by an n-
dimensional lattice of equal cells. 

• Each cell has a finite number of discrete properties.

• Time evolution of CA system occurs (can be modeled) in discrete time 
steps → generations.

• Evolution occurs to (a set of) strict deterministic rules.

• Evolution rules reference exclusively states of neighboring cells,

 reflect local environment.
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pi-1 qi-1 ri-1pi-1 pi-1

pi-1 qi ri-1pi-1 pi-1

Time

ti-1

ti

…. ….

…. ….

1D Cellular Automaton



Classification of Propagation Rules
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Classification of Propagation Rules
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pi-1pi-1
Occupied, alive Not occupied, dead Byte

?

0246 1357

? ??? ???

Rearrange byte pattern in ascending order:  bytes ordered in binary sequence 

Condition of survival of a cell depends on the states of its own past and that of its 
two neighbors’ past → depends on the past state of a triplet of 3 cells (=byte).

8 possible occupation patterns ( 0, 1, 2, 3, 4, 5, 6, 7) for each byte.
Any pattern in any one of them & any valid combination, could produce an alive (= 1) 
cell or a dead (= 0) cell in the following time iteration step. 

For 8 bytes, there are obviously 256 (0-255) possible conditions for an action (alive/dead). Complex 

preconditions for an action (0, 1) are defined by any combination (logic OR) of possible rules 

(represented by the set of all numbers 0,….,255).

Action



Classification of Propagation Rules
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01 Occupied, alive Not occupied, dead Byte

Implies live for the cell in the next time 
step, if it the cell was previously 
unoccupied and  had only one alive 
neighbor on the left or on one on the 
right, but not on both sides.

0

p q r

0246 1357

0 010 010

Rearrange byte pattern in ascending order:  bytes ordered in binary sequence 

Condition of survival of a cell depends on the states of its own past and that of its 
two neighbors’ past → depends on the past state of a triplet of 3 cells (=byte).

( )

i

4 1

binary 1

i i i

0

Propagation pattern

q (p r ) ( q )

Code # 10010 = 2 + 2 = 18

− − −

=

→ =   

2

1 1 1

i-1

i
Code
   #2



In the next time step,
center cell (qi+1) is populated 
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Interpretation of Propagation Rules

CA code # = 101002 = (24+22) = 2010 

if  (qi) is 
occupied 
and (pi) is not
and (ri) is not    

if (pi) is 
occupied
and (qi) is not
and (ri) is not    

Decimal 27         26         25    24         23        22       21  20

pi qi ri

( )
+
==   

i i i i
q p q r

1Formal logic
 ( )

\

T

F

p
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Constructing the Propagation: CA 20 

xk

? ? ?

q3
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pi qi ri

CA code # = 101002 = (24+22) = 2010 

Procedure
1. Draw grid 

x (k) vs. time (i)
2. Load initial 

conditions, 
pattern xk(i=0)

3. Derive pattern 
xk(i=1) from 
population of 
triplet 
{xk-1, xk, xk+1,} at 
(i=0)

4. Next row i……
5. For self-

replication, 
keep history

i=0

i=1

i=7

ti
m

e 
st

ep

coordinate step

Just one initial cell



Constructing the Propagation: CA 20 

xk
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pi qi ri

CA code # = 101002 = (24+22) = 2010 

Procedure
1. Draw grid 

x (k) vs. time (i)
2. Load initial 

conditions, 
pattern xk(i=0)

3. Derive pattern 
xk(i=1) from 
population of 
triplet 
{xk-1, xk, xk+1,} at 
(i=0)

4. Next row i……
5. For self-

replication, 
keep history

i=0

i=1

i=7

ti
m

e 
st

ep

coordinate step



Constructing the Propagation: CA 20 

xk
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pi qi ri

CA code # = 101002 = (24+22) = 2010 

Procedure
1. Draw grid 

x (k) vs. time (i)
2. Load initial 

conditions, 
pattern xk(i=0)

3. Derive pattern 
xk(i=1) from 
population of 
triplet 
{xk-1, xk, xk+1,} at 
(i=0)

4. Next row i……
5. For self-

replication, 
keep history

i=0

i=1

i=7

ti
m
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coordinate step



Coding CA#20
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Coding CA#30
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CA #30, with one more condition.  

More complex pattern. Repetitive fine 

structure is observed at the rim of the 

triangle and upon blowup. 



Coding CA#90 Specific IC
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CA #90, could be expected to show similar 

randomness as automaton #30. Instead, a 

highly repetitive pattern of nested triangles 

results. Blow-up: persists at several length 

scales (self-similar/fractal).



Coding CA#90 Specific Initial Conditions
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CA #90, with 3 initial cells populated.

Fractal structure is modified but persists.



Coding CA#90 Random IC
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CA #90, with random population of

50% of initial cells.

Specific fractal structure is washed 

out, additional pattern appears on 

larger length scale.
Approximates Random chaos



Summary

Very specific, simple, localized microscopic interactions of coupled systems can 
lead to highly organized structure.

Pronounced fractal structure emerges from localized initial conditions (seeds).

Spread-out initial state conditions lead to washed out structures or chaos.

Because of their specific (unusual) geometrical shape (surface/volume), Class-4 

CAs have functionality important for live, biomed and general technology.
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CA research: 4 classes of automata,

• Class 1 reaches a homogeneous state (all cells free) after a few initial 
steps.

• Class 2 shows a periodic pattern after the first few steps, relatively 
independent of initial conditions.

• Class 3 develops into a chaotic pattern, independent of initial 
conditions.

• Class 4 produces a highly complex, nested fractal pattern.

Fractal dimensions
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