
Agenda: Complex Processes in Nature and Laboratory

Systems and dynamics, qualifiers
 Examples (climate, planetary motion), 

Order and Chaos, determinism and stochastic unpredictability
 1D dynamics: phase space curves/orbits

Non-linear dynamics in nature and their modeling
 mathematical model (climate, logistic map)
 Stability criteria, stationary states

Self replicating structures out of simplicity 
 Cellular automata and fractal structures,
 Self-organization in coupled chemical reactions

Thermodynamic states and their transformations
 Collective and chaotic multi-dimensional systems
 Energy types equilibration, 
 flow of heat and radiation

Reading Assignments
 Weeks 1&2
LN II: Complex 
processes

Kondepudi Ch.19 
Additional Material
J.L. Schiff: 
Cellular Automata, 
      Ch.1, Ch. 3.1-3.6

McQuarrie & Simon 
Math Chapters 
                MC B, C, D, 



Order vs. Chaos: A Perfectly Ordered Universe ?

Era of Enlightenment  
(18th Century, Western Europe)

Newtonian Mechanics (3 Laws)

1. Inertial motion

2. Force- acceleration

3. Action-reaction
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0 0Force F dv dt= → =

0Force F dv dt F m → =

  : 0
i i

i

Closed system m F =

Accurate predictability of motion

1. All inertias mi

2. All forces  

3. Precise initial conditions 
i

F
,

i i
r v

Linear force laws:  Insensitivity to initial conditions 
Small changes in initial conditions
          → small changes in final positions and momenta

( ) ( ) ( )f x x f x x f x+   +  



A Perfectly Ordered Universe ?

Era of Enlightenment  
(18th Century, Western Europe)

Newtonian Mechanics (3 Laws)

1. Inertial motion

2. Force- acceleration

3. Action-reaction
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Newtonian Mechanics

(3 Laws) universally applicable (?)

Orrery: Complicated mechanical model of the 
solar system (clockwork)

Galilei’s observations, Kepler’s Laws

Planetary motion around Sun

Problematic timing



The 3-Body Problem

Many applications of Newtonian mechanics were 
successful, accurate.

One intricate mathematical problem: 
                   3-body motion

Poincare won 1887 Prize by Swedish King Oscar II 
for solving gravitational 3-body problem (by hand!):

Small planet in the gravitational field of binary star 
→ leads to unpredictable “chaotic” motion.
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From PBS-Nova (“Chaos”)

Demonstration of chaotic motion: Magnetic Pendulum

→ Sensitivity to initial conditions)

Magnetic Pendulum

Base (Styrofoam)
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Lorenz’ Chaotic Weather Model
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Convective currents in 
a beaker on a hotplate

Edward Lorenz in 1963 → “Butterfly Effect” 

Coupled differential rate equations for convective 
flows in atmosphere (variables in nat. units)
x: rotational velocity of flow (convective roll)

y: T between upward (warm) and downward (cold) 
currents 

z: non-linearity of vertical temperature profile (Earth)

    Parameters a, b, r >0

y
dx dy dz

a ( x) r x x z b z x
dt dt dt

y y=  − =  − −  = −  + 

( )
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dx dy dz
a x x r 0 b z

dt dt dt

exponential decay of convec

t happens for vanishing
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Model of Atmosphere
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

→ Identify important feedback mechanisms.

 Extreme sensitivity to initial conditions

Tc

Th
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Lorenz’ Chaotic Weather Model
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Lorenz’ Chaotic Weather Model
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Convective currents in 
a beaker on a hotplate

Edward Lorenz in 1963 → “Butterfly Effect” 

Coupled differential rate equations for convective 
flows in atmosphere (variables in nat. units)
x: rotational velocity of flow (convective roll)

y: T between upward (warm) and downward (cold) 
currents 

z: non-linearity of vertical temperature profile (Earth)

    Parameters a, b, r >0

y
dx dy dz

a ( x) r x x z b z x
dt dt dt

y y=  − =  − −  = −  + 

( )

What happens for vanishing y 0 ?

dx dz
a x b z

dt dt

exponential decay of convective roll
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→ Identify important feedback mechanisms.

 Extreme sensitivity to initial conditions



Lorenz’ Chaotic Weather Trajectories
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Trajectories  jump between, and move in, two 
separate domains, each centered around a 
“strange attractor”
Calculations for parameter set 

[a= 10, b = 8/3, r = 28]

( )

( )

( )

x(t ) dx dt tx(t t )

y(t t ) y(t ) dy dt t

z(t t ) z(t ) dz dt t

 + +  
  

+  = +   
    +  +    

Interesting numerical project
Solve Deq by iteration



Intermediate Summary

• Chaotic (unpredictable) dynamics can be caused by non-linear forces for certain 
complex systems, which have specific sets of properties (→model parameters). 

• Chaotic (unpredictable) dynamics can be caused by correlated motion along 
different degrees of freedom. Rate equations become substantially entangled for 
higher orders (second and higher time derivatives).

• Predictable (“orderly”) dynamics is characterized by insensitivity to initial 
conditions.

• Unpredictable (“chaotic”) dynamics is associated with high sensitivity to initial 
conditions.

• Both, orderly and chaotic dynamics can lead to asymptotically (t → ∞) 
predictable states (deterministic chaos).

• Chaotic dynamics can lead to different classes of periodic or (quasi-) random 
asymptotic states. 

Important examples: global climate, biological population dynamics, organ 
functionality, catalytic chemical reactions.
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Analyze a simple (1D) chaotic system (climate rad balance, electric circuits )



1D Classical Dynamics: Phase Curves

One 2nd-order DEq is equivalent
to system of two 1st-order DEqs.  
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Pendulum dynamics order DEq m L m g L t
dt
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  = −   

2Inertia mL = Torque M mgL=

( ) ( ) ( )0 ; 0 0 ( )?sinInitial conditions harmonic    = →

( )

( )
( )

( )
( )

2

2

2

sin

sin ,

d t
t angular velocity

d dt
g L

dt d t
g L

dt











=


= −  → 


= −   =


2

Phase curves = trajectories 

in phase space 

{position x velocity}
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Pendulum Phase Curves

t
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1D Classical Dynamics: Example
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Librations

−

0

Pendulum Phase Curves: Periodic Orbits

t

time



1D Classical Dynamics: Special (Singular) States

Understand & predict dynamics: Analyze phase space orbit = trajectory                      
illustrates states visited by a dynamical system with  progressing time. 
Q:  Are there specifically stable or unstable states, equilibrium, attractor states? 

Compl Sys Dyn  W. U. Schröder, 2025

In
tr

o
 O

rd
er

&
C

h
ao

s
1

2

 ,x x v =

( ) ( ) ( ) ( ) ( )

( )

21
....

2!
n n n

n

d
x f x f x x f x x f x

dt

d
x x f x

dt

  = − =   +   +

   

( ) ( )
( )

( )

1 : , . .

( ):

:

0
n

n n

V xd
D system EoM x f x e g f x

dt x

Fix points of stationary states

Check behavior in vicinity of x x x x

f x


= = −



=

=

+ 

( ) ( ) ( )0 nf x t
x t x e

 
   

( )

( )

0

0
n

n
f x re

nattractiof

s

x

pul ion 

  

Exponential growth 

or decay

( ) ( )
1

0
n

x
t x Ln

f x x

  
   →         

( )f x

x

( ) ( )
d

sign x sign x sign f
dt

 
 =   

 



Tipping Points in Earth Climate ?

Non-linear and coupled effects in Earth 
current climate evolution → global warming, 
melting of sea ice , ice cap, desertification, 
ocean acidification, sea level rise,……

Historic climate facts:
Earth climate has alternated between 
Ice ages (little and major) and greenhouse 
periods.  Transition speed?
Do we have time to adapt or change pace?
Mind the fate of planet Venus (NYT 012921)

Surface Melt of Greenland Ice Sheet

4 days

Earth albedo or surface reflectivity   = 
important in maintaining radiation balance

Glaciation: increasing ice cover 0 0surface temperature change T  →  

Warming: decreasing ice cover 0 0surface temperature change T  →  

Albedo is non-monotonic function of important driving parameters, has extrema!



Earth Albedo Model

Albedo is non-monotonic function of important driving parameters. 

Combine   parameter dependence to model non-linear dependence on history: 
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Intermediate Summary

• Chaotic (unpredictable) dynamics can be caused by non-linear force laws for certain complex 
systems, which have specific sets of properties (→model parameters). 

• Chaotic (unpredictable) dynamics can be caused by correlated motion along different degrees 
of freedom. Rate equations become substantially entangled for higher orders (second and 
higher time derivatives).

• Predictable (“orderly”) dynamics is characterized by insensitivity to initial conditions.

• Unpredictable (“chaotic”) dynamics is associated with high sensitivity to initial conditions.

• Both, orderly and chaotic dynamics can lead to asymptotically (t → ∞) predictable states 
(deterministic chaos).

• Chaotic dynamics can lead to different classes of periodic or (quasi-) random asymptotic 
states. 

Important examples: global climate, biological population dynamics, organ functionality, 
catalytic chemical reactions.
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Analyze a simple (1D) chaotic system (climate rad balance, electric circuits )

Linear force laws are deterministic → lead to  predictable  evolution,  and are 
not sensitive to initial conditions. Example: Small changes in initial conditions → 
small changes in final positions and momenta ( ) ( ) ( )f x x f x x f x+   +  
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