Agenda: TD Phenomenology of Real Matter, Gases etc.

- Fundamental ideal gas laws, Equations of state (EoS) Isothermal expansion/compression Adiabatic expansion/compression
- Circular processes

 Work, heat, and entropy in Carnot processes
 Carnot, Kelvin/Clausius 2ndLTD
 Thermodynamic driving potentials
 Application chem reaction
- Equation of state of real matter Van der Waals gas & other gas models, applications Energy, activity, fugacity of real matter, gases & liquids Phase equilibria

- Reading Assignments Weeks 7 & 8 LN IV.4-7:
- Kondepudi Ch. 3.5-3.7, 6.1-6.3, 7.

McQuarrie & Simon Ch. 5, 6

Math Chapter B, C

- Statistical Mechanics
 - Quantum statistics Partition functions

W. Udo Schröder, 2025

$$V(r) = 4\varepsilon \cdot \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Different mutual interactions: Coulomb repulsion of atomic nuclei Coulomb attraction of ions Dipole-dipole interactions (both, qm) Vander Waals interaction of atoms Ideal gas approximation good: V > 5L/mol (diatomic), V > 20 L/mol (complex)

→ Real gas molecules interact with each other → motion is more or less free depending on density, pressure, temperature

→ Different phases of substances:
 Low density → gas
 High densities (small distances) → liquid or solid behavior.

→ Coexistence of different phases in specific regions density-temperature Phase transitions can be sudden (fast)

→ EoS non-monotonic → liquid-gas instability, different solid crystal structures.

Excluded Volume Hard-sphere interactions

High densities = small distances) \rightarrow excluded volume

Blocked volume ΔV : not available for another particle $\Delta V \rightarrow R_{blocked} = 2 \cdot R \rightarrow 2^3$ times the specific volume,

$$\Delta V = 8 \cdot v$$
 with $v = \frac{4\pi}{3} \cdot R^3$

Effective volume for N particles: $V \rightarrow V_{eff} = V - 8 \cdot N \cdot v$

$$V_{eff} = V \cdot (1 - 8 \cdot \rho \cdot \upsilon) < V \qquad \Delta V < 0$$

Effective density of real gas: $\rho_{eff} = N/V_{eff}$

$$\rho_{eff} = \frac{N}{\left(V - 8 \cdot N \cdot \upsilon\right)} = \frac{N}{V} \frac{1}{\left(1 - 8 \cdot \rho \cdot \upsilon\right)}$$

$$\rho = \frac{N}{V} \to \rho_{eff} = \frac{\rho}{\left(1 - 8 \cdot \rho \cdot \upsilon\right)} > \rho$$

 \odot

Effective Pressure of Real Gases/ vdW EoS

Without interaction: $\langle E \rangle = (1/2)k_BT$ per $d.o.f. \rightarrow K = (3/2)k_BT$ Long-range part of L-J potential= attractive force, retards the motion of the particles $\rightarrow K < (3/2)k_BT \rightarrow p_{real} < p_{IG}$

Effective interaction rate volume for *N* particles: $\sigma \sim \rho^2$

$$\rightarrow \Delta p \propto \rho^2 \rightarrow \Delta p \sim \rho^2 \approx -a \cdot \frac{N^2}{V^2}$$
 with $a > 0; \Delta p < 0$

Observed pressure for real gas $p_{meas} < p_{IG}$. $p_{meas} = p_{IG} + \Delta p$ $Nk_BT = p_{IG} \cdot V_{eff} = (p_{meas} - \Delta p) \cdot V \cdot (1 - 8\rho v)$

$$\left(p + a\left(\frac{N}{V}\right)^2\right) \cdot \left(V - Nb\right) = Nk_BT$$
 van der
for real

van der Waals EoS for real gases

Use experimental observables/parameters: **p**, **V** for fits to vdW EoS

W. Udo Schröder, 20

Real-Gas Equation of State

$$\underbrace{\left(p+a\cdot\left(\frac{n}{V}\right)^{2}\right)}_{\triangleq ideal \ pressure}\underbrace{\left(V-n\cdot b\right)}_{\triangleq ideal \ volume} = n\cdot R\cdot T$$

- van der Waals: effects taken into account
- a) average volume taken by gas particles \rightarrow available volume reduced. \rightarrow parameter **b**
- b) collisions between particles reduce the actual pressure, attractive interactions.
 - → $N_{coll} \propto (density)^2$, → scaling parameter **a**

vdW EoS & Phases of Matter

Shaded: negative pressures, substance does not exist as gas, liquefaction, liquid-gas coexistence, freezing to solid.

		Critical p	pressure P _c	Critical ter		
Material	Formula	psia	bar (abs)	°F	°C	$k = C_p / C_v$
Water	H ₂ O	3206	221	705	374	1.32

Model Parameterization of Real Gases

Ideal gas approximation good: V > 5L/mol (diatomic), V > 20 L/mol (complex) Real-gas EoS non-monotonic \rightarrow liquid-gas instability.

For higher compression, real (vdW model) gases tend to collapse (p decreases with decreasing V) \rightarrow liquifaction

Correct the EoS for instability (unphysical for single phase): Maxwell Construction

Maxwell Construction Outlining Coexistence Region

 $3p_{r}V_{r}^{3} - (p_{r} + 8T_{r})V_{r}^{2} + p_{r} - 3 = 0$

has 3 roots $V_r(p_r, T_r) \rightarrow$ instability of configuration

 \rightarrow Change in phase to include clusterization, liquid droplets, Effects beyond the model space of consideration.

Hached unstable p - V region \rightarrow coexistence of gas and liquid

Compressibility Factor: Virial Expansions

σ

Law of Corresponding States

Critical TD Parameters for Real Gases

						k =]					
Vaterial	Formula	psia	bar (abs)	°F	°c	Cp/Cv						
Acetic Acid	CH3-CO-OH	841	58	612	322	1.15						
Acetone	CH3-CO-CH3	691	47.6	455	235	-	1					
Acetvlene	C2H2	911	62.9	97	36	1.26						
Air	02+N2	547	37.8	-222	-141	1.4]					
Ammonia	NH3	1038	113	270	132	1.33	ľ					
Argon	А	705	48.6	-188	-122	1.67						
Benzene	C6H6	701	48.4	552	289	1.12						
Butane	C4H10	529	36.5	307	153	1.09						
Carbon Dioxide	C02	1072	74	88	31	1.3						
Carbon Monoxide	CO	514	35.5	-218	-139	1.4]					
Carbon Tetrachlorid	e CCl4	<mark>66</mark> 1	45.6	541	283	-						
Chlorine	Cl2	1118	77	291	144	1.36]			i		+
Ethane	C2H6	717	49.5	90	32	1.22		ncia	bar (aba)	°E	°	k =
Ethyl Alcohol	C2H5OH	927	64	469	243	1.13	a	psia	bai (abs)	F	C .	Cp/Cv
Ethylene	CH2=CH2	742	51.2	50	10	1.26	н-снз	544	37.5	273	134	1.1
Ethyl Ether	C2H5-O-C2H5	522	36	383	195	-	IOH-CH3	779	53.7	455	235	-
luorine	F2	367	25.3	-247	-155	1.36		673	46.4	-117	-83	1.31
Helium	He	33.2	2.29	-450	-268	1.66)H	1156	79.6	464	240	1.2
Heptane	C7H16	394	27.2	513	267	-		492	34	-233	-147	1.4
Hydrogen	H2	188	13	-400	-240	1.41		1054	72.7	99	37	1.3
Hydrogen Chioride	нсі	1199	82.0	124	51	1.41	H2)6-	362	25	565	296	1.05
					Oxygen	02		730	50.4	-182	-119	1.4
					Pentane	CSH1	2	485	33.5	367	197	1.07
					Phenol	C6H5	бОН	889	61.3	786	419	-
					Phosgene	COC	2	823	56.7	360	182	-
					Propane	C3H8	3	617	42.6	207	97	1.13
					Propylene	CH2=	CH-CH3	661	45.6	198	92	1.15
					Refrigerant 12	CCI2F	F2	582	40.1	234	112	1.14
					Refrigerant 22	CHCI	F2	713	49.2	207	97	1.18
					Sulfur Dioxide	S02		1142	78.8	315	157	1.29
					Water	H20		3206	221	705	374	1.32

Steam: Driving Gas for Cyclic TD Engines

After Andrews & Jelley, Energy Science

Total heat required at p = const. to convert H_2O to steam @100°C :

W. Udo Schröder, 2025

Steam Tables

Absolute pressure (kPa, kN/m ²)	<u>Temperature</u> (°C)	<u>Specific</u> <u>Volume</u> (m ³ /kg)	<mark>Density</mark> -ρ- (kg/m ³)	Sp	Specific		
				Liquid - h _l - (kJ/kg)	Evaporation - h _e - (kJ/kg)	Steam - h _s - (kJ/kg)	Entropy of Steam - S - (kJ/kgK)
0.8	3.8	160	0.00626	15.8	2493	2509	9.058
2.0	17.5	67.0	0.0149	73.5	2460	2534	8.725
5.0	32.9	28.2	0.0354	137.8	2424	2562	8.396
10.0	45.8	14.7	0.0682	191.8	2393	2585	8.151
20.0	60.1	7.65	0.131	251.5	2358	2610	7.909
28	67.5	5.58	0.179	282.7	2340	2623	7.793
35	72.7	4.53	0.221	304.3	2327	2632	7.717
45	78.7	3.58	0.279	329.6	2312	2642	7.631
55	83.7	2.96	0.338	350.6	2299	2650	7.562
65	88.0	2.53	0.395	368.6	2288	2657	7.506
75	91.8	2.22	0.450	384.5	2279	2663	7.457
85	95.2	1.97	0.507	398.6	2270	2668	7.415
95	98.2	1.78	0.563	411.5	2262	2673	7.377
100	99.6	1.69	0.590	417.5	2258	2675	7.360
101.331)	100	1.67	0.598	419.1	2257	2676	7.355
110	102.3	1.55	0.646	428.8	2251	2680	7.328
130	107.1	1.33	0.755	449.2	2238	2687	7.271
150	111.4	1.16	0.863	467.1	2226	2698	7.223
170	115.2	1.03	0.970	483.2	2216	2699	7.181
190	118.6	0.929	1.08	497.8	2206	2704	7.144
220	123.3	0.810	1.23	517.6	2193	2711	7.095
260	128.7	0.693	1.44	540.9	2177	2718	7.039
280	131.2	0.646	1.55	551.4	2170	2722	7.014
320	135.8	0.570	1.75	570.9	2157	2728	6.969

Enthalpy

$$H(T) = H^{0}_{T_{0}=298K} + \Delta H(T)$$

$$\Delta H(T) = \int_{T_{0}}^{T} C_{P}(T') dT'$$

 $C_{P}(T) = C^{\circ} + a \cdot T + b \cdot T^{2} + \cdots$ Parameters from data fits

$$p = 1 \ bar = 101.33 \ kN/m^2$$

Water $0^{\circ}C \rightarrow 100^{\circ}C$. $\rightarrow 419 \text{ kJ/kg}$

→ Specific enthalpy H_2O : $h_{water}(100^{\circ}C) = 419 \text{ kJ/kg}.$

Specific enthalpy of evaporation: $h_{evap}(100^{\circ}C) = 2,257kJ/kg$

h_{steam}(100^oC)=2.676MJ/kg

Ideal Otto Cycle

- 1) Intake stroke ($1 \rightarrow 2$), gasoline vapor and air drawn into engine.
- 2) Compression stroke $(2\rightarrow 3)$. *p*,*T* increase.
- 3) Combustion (spark) (3→4), short time, V= constant. Heat absorbed from high-*T* "reservoir".
- 4) Power stroke: expansion $(4 \rightarrow 5)$.
- 5) Valve exhaust: Valve opens, gas can escape.
- 6) Emission of heat $(5 \rightarrow 6)$ to *low-T reservoir*.
- 7) Exhaust stroke $(2 \rightarrow 1)$, piston evacuates cylinder.

Turbine for Gas Power Plants

SGT-800 Power generation 47.00MW(e) Fuel: Natural gas*, Frequency: 50/60Hz Electrical efficiency: 37.5% Heat rate: 9,597kJ/kWh (9,096Btu/kWh) Turbine speed: 6,608rpm Compressor pressure ratio: 19:1 Exhaust gas flow: 131.5kg/s Exhaust temperature: 544°C (1,011°F) NOx emissions (with DLE, corrected to 15% O2 dry): \leq 15ppmV

Available for different power outputs (5-375 MW), revolutions 3,000-17,000 rpm, 50/60 Hz electric. Efficiencies 0.35- 0.60

