Agenda: TD of Dilute Gases, Simple Processes

- Fundamental ideal gas laws, Equations of state (EoS) Isothermal expansion/compression Adiabatic expansion/compression
- Circular processes
 Work, heat, and entropy in Carnot processes
 Carnot, Kelvin/Clausius 2ndLTD
 Thermodynamic driving potentials
- Equation of state of real gases
 Van der Waals & other models
 Activity, fugacity
 Phase equilibria
- Statistical Mechanics Quantum statistics Partition functions

Reading Assignments Weeks 6 & 7 LN IV.1-4:

Kondepudi Ch. 5.1-5.3, 6.1-6.3.

McQuarrie & Simon Ch. 2, 5, 6, 7.1-7.4 Math Chapter B, C

Entropy & Energy in Spontaneous Processes

Spontaneous processes = dissipation = equilibration processes are driven by entropy flow $\Delta S > 0$. Reversible processes require $\Delta S \equiv 0$

Microscopic statistical entropy is formulated in terms of actual population probabilities $\{p_i\}$ of Ω accessible configurations (multi-particle states)

Dilute systems of <u>non-interacting</u>, <u>structure-less</u>, <u>point-like</u> ("ideal") <u>particles</u>

 $S = -n \cdot R \cdot \sum_{i} p_{i} \cdot Ln p_{i}$ n moles

See MB,

collisions

Equation of State $P \cdot V = N \cdot k_B \cdot T \rightarrow \{PVT\}$ correlation for @ max. entropy S

Internal, equilibrated energy $U = N \cdot \frac{3}{2} k_{B} \cdot T$ @T = const.

 $S = -N \cdot k_B \cdot \sum_i p_i \cdot Ln p_i$ N particles

Process change in internal energy
$$\rightarrow \Delta U = \left(N \cdot \frac{3}{2}k_B\right) \cdot \Delta T = C_V \cdot \Delta T$$

Heat capacity $c_V = (3/2)k_B$ per particle $\rightarrow C_V = (3/2)R$ per mole

 \sim

Entropy and Energy State Functions

Spontaneous processes = dissipation = equilibration processes are driven by entropy flow $\Delta S > 0$. Reversible processes require $\Delta S \equiv 0$

$$Processes (in \to fin): \Delta S = S_{fin} - S_{in}; S(N, V, U = E_{heat}) = k_B \cdot Ln \Omega(N, V, U)$$

$$From \ earlier \to \Omega(N, V, U = E_{heat}) \propto V \to and E_{heat} \triangleq U = T \cdot S$$

$$Distributed \ total \ energy \ U \to \frac{U}{N} = E_{heat} = k_B \cdot T$$

$$\left[\frac{\partial S(N, V, U)}{\partial U}\right]_{N, V=const} = \frac{1}{T}$$

$$S(U,V,N) = k_B \cdot Ln \Omega = \frac{1}{T} \cdot U + \frac{P}{T} \cdot V - \frac{\mu}{T} \cdot N$$

Heat W. Udo Schröder, 2025

 $dS = \frac{1}{2} \cdot dU + \frac{P}{2} \cdot dV - \frac{\mu}{2} \cdot dN$

P-V work

Chemical

 \odot

The (Ideal-Gas) Equation of State

State functions p, V, T,... Molar p(V,T) hyper-plane (monotonic) contains all possible gas states **A**. There are no other states of the gas.

The Adiabatic Equation of State

 $\mathbf{p} \cdot \mathbf{V} = \mathbf{n} \cdot \mathbf{R} \cdot \mathbf{T}; \mathbf{n} = \# \text{ moles}, \mathbf{T} \rightarrow U$ Non-interacting \rightarrow Only gas phase!

11/

EoS+1stLTD \rightarrow Relation between internal energy of ideal gas and pressure-volume relation.

Adiabatic expansion means (here) no exchange of heat energy, dq=0.

> Calculation for 1 mole ideal gas dU = dq - pdV and $dq = 0 \rightarrow$

$$0 = \frac{dq}{dt} = \frac{dU + p \cdot dV}{dV} \rightarrow \frac{dU}{dU} = -p \cdot dV < 0$$
$$\frac{dU(V,T)}{dU(V,T)} = C_V \cdot dT < 0$$

 $0 = C_V \cdot dT + p \cdot dV = C_V \cdot dT + \frac{R \cdot T}{V} \cdot dV$

 $p \cdot V^{\gamma} = const.$

 $T^{\gamma} \cdot p^{1-\gamma} = const.$

$$C_{V} \cdot \frac{dT}{T} + R \frac{dV}{V} = 0 \rightarrow \frac{dT}{T} + \left(\frac{R}{C_{V}}\right) \frac{dV}{V} = 0$$

Later : $C_{P} = C_{V} + R$; $\gamma \coloneqq C_{P}/C_{V}$
$$\frac{dT}{T} + (\gamma - 1) \frac{dV}{V} = 0$$
 \longrightarrow $T \cdot V^{\gamma - 1} = const.$
 $p \cdot V^{\gamma} = const.$
 $T^{\gamma} \cdot p^{1 - \gamma} = const.$

Circular Processes on EoS Hyperplane

Heat and cool the working IG volume @ specific times \rightarrow Cyclic thermal engine

W. Ud. Ret 8.3145 J/mol·K

 \mathbf{v}

Isothermal Expansion/Compression

w = - area under curve P(V) (1 mole) Total expansion work ($V_1 \rightarrow V_2$) reduces internal energy (cools):

Use $p \cdot V = R \cdot T$ for expanding 1 mole $w = -\int_{V_1}^{V_2} p(V) dV = -R \cdot T \int_{V_1}^{V_2} \frac{dV}{V} =$ $= -R \cdot T \cdot \ln\left(\frac{V_2}{V_1}\right) < 0$

w < 0 implies system does work on environment on surroundings But $\Delta U \propto \Delta T = 0 \rightarrow q > 0$ (must absorb heat) <u>1. LTD:</u>

$$\rightarrow q = \Delta U - w = -w = R \cdot T \cdot \ln\left(\frac{V_2}{V_1}\right) > 0$$

$$absorbed @T$$

Isobaric Compression

Work done on system @ p = const.: $w = -\int_{1}^{2} p(V) dV = -p \cdot \int_{1}^{2} dV > 0$ $= -p \cdot \Delta V = -\mathbf{R} \cdot \Delta T = Shaded Area$ \rightarrow tends to increase U, T But at $p = const. T_1 \rightarrow T_2 < T_1$ Internal energy change $\Delta U = q + w \stackrel{!}{=} C_v \cdot [T_2 - T_1] < 0$ $q = \Delta U - w = \Delta (U + p \cdot V)_{p}$ $q = \Delta H = \left(C_{V} + R \right) \cdot \left[T_{2} - T_{1} \right]$ **Cool** gas! $q = C_p \cdot \Delta T = \frac{5}{2}R \cdot \Delta T < 0$

Contract @T_c F T_c P T_c Cooling

Enthalpy change (for p = const.): $\Delta H = C_p \cdot \Delta T \rightarrow C_p = C_V + R$

Inverse process: heating at constant p, e.g., $p=p_{atm}$, leads to expansion, $V_2 \rightarrow V_1 > V_2 \rightarrow drives$ piston out.

Isochoric Decompression

Isochoric (V = const.) decompression \rightarrow of 1 mole w =-p\Delta V=0

No work done on system w = 0 *But* $\Delta U < 0$, \rightarrow *system must emit heat* $q = C_V \cdot \Delta T = C_V \cdot [T_2 - T_1]$

1. Law of Thermodynamics : $\Delta U = q + w = q = C_V \cdot [T_2 - T_1] < 0$ Enthalpy change $\Delta H = \Delta U + \Delta (p \cdot V) = (C_V + R) \cdot \Delta T$ $= C_p \cdot [T_2 - T_1] \quad (always = C_p \cdot \Delta T)$ NOTE : $\Delta H \neq q$ (since $p \neq const$)

Inverse process: heating at constant *V*, leads to increased temperature and pressure.

Thermal Engine: Expansion-Compression Cycles

Ideal-gas system (N particles) absorbing external heat (q>0) can produce mechanical work (w<0) on surroundings. Continuous operation requires cyclic process (in p-V-T). \rightarrow Needs good contacts to heat bath $@T_1$ and heat sink $@T_2 \rightarrow$ reversible processes

In one cycle the gas absorbs net heat energy and does the net work,

 $w = w_1 + w_2 = -q = C_V \cdot [T_2 - T_1]$

Not all absorbed heat is converted, some must be dumped as waste heat.

Isothermal expansion at T₁=const.
 Isochoric decompression at V₂=const.,
 Isothermal compression at T₂ =const.
 Isochoric compression V₁=const.,

Sign convention: Internal energy gain or loss

→ Work-Heat Balance:			
1-2 gas does work	$-w_1 = q_1;$	$\Delta U = 0$	
2-3 gas is cooled	q < 0;	∆U < 0	
3-4 gas is compressed	$w_2 = -q_2;$	$\Delta U = 0$	
4-1 gas is heated	q > 0;	∆U > 0	
Total internal energy: $\Delta U = 0$ (cyclic)			
Total heat absorbed:	$q = q_1 + q_2 =$	-w > 0	
Total work by engine :	$\boldsymbol{w} = \boldsymbol{w}_1 + \boldsymbol{w}_2$	2 < 0	
_			

10

Carnot Engine Cycles

V

Energy balance: $w = q_1 + q_2 > 0$ on isothermal portions: w+q=0 Adiabatic works cancel

$$\frac{q_1}{q_1} = -w_1 = \int_{V_1}^{V_2} p \, dV = R \cdot \frac{T_1}{T_1} \cdot \ln\left(\frac{V_2}{V_1}\right) > 0$$

$$\frac{q_2}{q_2} = -w_2 = \int_{V_3}^{V_4} p \cdot dV = -R \cdot \frac{T_2}{T_2} \cdot \ln\left(\frac{V_3}{V_4}\right) < 0$$

Reversible adiabatic exp./compr.: $\Delta S = q/T = 0$ since q = 0. Irreversible adiabatic exp./compr.: $\Delta S \neq 0$.

Adiabatic (q = 0) EoS $T \cdot V^{\gamma-1} = const$ $\gamma = c_p/c_v$ Adiab. expansion/compr. $\rightarrow V_4/V_1 = V_3/V_2$

 $T_h \rightarrow T_c = T_2$

"Entropy" $\left| \frac{q_1}{T_1} = -\frac{q_2}{T_2} \right| = -\Delta S_2 = \Delta S_1$

 $\rightarrow V_2/V_1 = V_2/V_4$

Entropy is conserved in reversible *cyclic processes* : $\Delta S_1 + \Delta S_2 = 0$.

 $\rightarrow S = state function (descriptor)$

For any process: $\Delta S_{A \to B} \geq \frac{q_{A \to B}}{T}$ = sign for reversible $A \rightarrow B$ only.

Efficiency of Carnot Engines

Efficiency of an ideal Carnot engine

$$\mathcal{E}_{C} = \frac{-w}{q_{h}} = \frac{q_{h} + q_{c}}{q_{h}}$$
$$\mathcal{E}_{C} = 1 + \frac{q_{c}}{q_{h}} = 1 - \frac{T_{c}}{T_{h}} \xrightarrow{T_{h} \to \infty} 1$$

- Efficiency of a realistic Carnot-type engine must be lower than $\epsilon_{\rm C}$.
- All engines based on *pV* processes can be simulated by a combination of Carnot processes.
- No thermodynamic (*pV*) engine can have an efficiency larger than $\epsilon_{\rm C}$.

Typical thermal engines have efficiencies of $\varepsilon_{\text{therm}} \sim 0.3$.

12

Pressure Units

V·T·E	pascal	bar	technical atmosphere	
	Pa	bar	at	
1 Pa	≡ 1 N/m ²	10 ⁻⁵	1.0197×10 ⁻⁵	
1 bar	10 ⁵	≡ 10 ⁶ dyn/cm ²	1.0197	
1 at	0.980665 ×10 ⁵	0.980665	= 1 kp/cm ²	
1 atm	1.01325 ×10 ⁵	1.01325	1.0332	
1 Torr	133.3224	1.333224×10 ⁻³	1.359551×10 ⁻³	
1 psi	6.8948×10 ³	6.8948×10 ⁻²	7.03069×10 ⁻²	