Agenda: TD of Dilute Gases, Simple Processes

Isothermal expansion/compression
Adiabatic expansion/compression

e Circular processes
Work, heat, and entropy in Carnot processes
Carnot, Kelvin/Clausius 2ndLTD
Thermodynamic driving potentials

Reading
Assignments
Weeks 6 & 7

LN IV.1-4:

Kondepudi Ch. 5.1-
5.3, 6.1-6.3.

McQuarrie & Simon
Ch.2,5,6,7.1-7.4
Math Chapter B, C



Entropy & Energy in Spontaneous Processes

Spontaneous processes = dissipation = equilibration processes are
driven by entropy flow AS > 0. Reversible processes require AS = 0

Microscopic statistical entropy is formulated in terms of actual population
probabilities {p;} of  accessible configurations (multi-particle states)

|S:—N-kB-Zi p,-Lnp, | Nparticles S=-n-R-) p-Lnp, [nmoles

Dilute systems of non-interacting, structure-less, point-like (“ideal”) particles

equilibrium states
@ max. entropy S

See MB,
collisions

Equation of State‘ P-V =Nk, -T{PVT|correlation for

Internal, equilibrated energy |U=N - ng -T | @T = const.

Process change in internal energy —>‘AU :(N : %kBj AT =C, -AT‘

Heat capacityl c, = (3/2)kB|per particle — C, = (3/2)R per mole




Entropy and Energy State Functions

Spontaneous processes = dissipation = equilibration processes are
driven by entropy flow AS > 0. Reversible processes require AS = 0
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The (Ideal-Gas) Equation of State

p:'V =n:R-T; n=# moles, T=> U
Non-interacting - Only gas phase! Hyperplane of

Equilibrium States

\—-
1-10 A ORI
I\ .‘-m-w'-q \"‘;‘\‘\\\\“\ Ideal Gas Constant R
IR _
S \\5*\‘\\\%0\&;&{ R = 0.0821 liter-atm/mol-K
ARG R = 8.3145 J/mol-K
5_104 R = 8.2057 m3-atm/mol-K
R = 62.3637 L-Torr/mol-K or
7 5.10% L-mmHg/mol-
*

Vi) 100 L A& °

State functions p, V, T,... . Molar p(V,T) hyper-plane (monotonic) contains all possible gas
states A. There are no other states of the gas.



The Adiabatic Equation of State

p-V =n-R-7; n=# moles, 7> U . EoS+1stLTD->Relation between internal
Non-interacting 2 Only gas phase!  anergy of ideal gas and pressure-volume

relation.
Adiabatic expansion means (here) no
exchange of heat energy, dg=0.

Calculation for 1 mole ideal gas
dU =dqg-pdV and dg=0 —

O=dg=dU+p-dV -dU=-p-dV<0
dU(V,T):CV-dT<0

s
V() 100L & R.T

0=C,-dT+p-dV=C,-dT + -dVv
Cv.d_T+Rd_V:O_)d_T+ i d_V:
T V T |c, )V
Later:C,=C, +R; y:=c,/c, T -V’ = const.
V" = const.
d_T+(7_1)d_V:o P /
T |4 T”-p~” = const.




Circular Processes on EoS Hyperplane

al,Cac FOS D.\/ _ D A circular process
Ideal-Gas EOS P.V=R-T ASBSCIDSA

on the EoS hyperplane

—

p(Pa) A_% B along Expand @Thn Contract @Tc
A
7.510% o 0 ° = 9
o T rle T. P l@
4 ® o o
5:10 Heating T,, > T Cooling
2.5-10% " [ ‘@
Compression C > D along %QQ L A
0—t isotherm 7. = 300K £ returns the IG system to its
Q AN initial state A after a
V() 100 L ~® combination of slow
(=reversible) expansion and
Ideal Gas Constant R compression processes.
R = 0.0821 liter-atm/mol-K Heat and cool the working IG volume @ specific
| R = 8.3145 )/mol-K times = Cyclic thermal engine




[sothermal Expansion/Compression

p:

Expand @Tn

fF

0000 _

A !

Ty

4

P

Heating Ty,

w = - area under curve P(V) (1 mole)
Total expansion work (V; ->V,) reduces
internal energy (cools):

Use p-V =R-T for expanding 1 mole

de
LV

=—R-T. In[v ]<O
Vl

w < 0 implies system does work on environment
on surroundings

But AU o« AT =0 — g > 0 (must absorb heat)
1.LTD:

w=-| p(\/)dV——R T

—> =AU -w=-w=R-T- In(vj>0
=0 absorbed @T



[sobaric Compression

Compress 1 mole at p=const.

Work done on system @ p =const.:

2 2
w:-j1 p(V)dV =— p-L dv >0
=—p-AV =—-R-AT = Shaded Area
—tends to increase U, T

Butat p=const. T, > T, <T,
Internal energy change
AU =q+W=C, -[T, ~T,] <0
qg=AU -w=A(U+p-V),

q=AH =(C, +R)-[T, -T]]

P |’
7, < I, Cool ,_~ . _§ .
: AV gas!q—Cp AT_ZR AT <0
Contract @Tec
I F
1 _____ Enthalpy change (for p=const.):AH =C_-AT -C_ =C, +R
gﬁ ! s Inverse process: heating at constant p, e.g., p=p.im ,
¢ leads to expansion, V, 2 V,>V, 2 drives piston out.

» T. Cooling



Isochoric Decompression
Isochoric (V = const.) decompression
- of 1 mole w =-pAV=0

Pa 0q=C,-AT<0 No work done on system w =0
\ But AU <0, — system must emit heat

q=C, -AT =C, [T, -T}]

T, 1. Law of Thermodynamics :

AU =q+w=q =C, -[T, -T,] <0

Enthalpy change

AH =AU +A(p-V)=(C, +R)-AT

a4 =C,-[T,-T,] (always=C,-AT)
NOTE : AH # g (since p # const)

P2

Inverse process: heating at constant V, leads to increased temperature
and pressure.



Thermal Engine: Expansion-Compression Cycles

Ideal-gas system (N particles) absorbing external heat (g>0) can produce mechanical
work (w<0) on surroundings. Continuous operation requires cyclic process (in p-V-T).
- Needs good contacts to heat bath @T, and heat sink @T, - reversible processes

A 1 1) Isothermal expansion at T;=const.

P pV-work w=-p-AV I 2) Isochoric decompression at V,=const.,
3) Isothermal compression at T, =const.
4) Isochoric compression V,=const,,

Sign convention: Internal energy gain or loss

> Work-Heat Balance:

1-2 gas does work -W; = qq; AU =0
2-3 gas is cooled q< 0; AU < O
3-4 gas is compressed w,=-q,; AU =0

V1 Vz 4-1 gas is heated q> 0; AU > 0
In one cycle the gas absorbs net heat
energy and does the net work,
W=W, +W, =-q = Cy[To-T,] Total heat absorbed: | g = g,+g,=-w > 0

Total internal energy: AU = 0 (cyclic)

Not all absorbed heat is converted, Total work by engine jjw = w;+ w, <0

some must be dumped as waste heat.



Carnot Engine Cycles

Pl (p,, Vy) Isothermal expansion  atT,=T,
Adiabatic expansion T,> T.=T,
Isothermal compression at T.=T, <T,
Adiabatic compression T.> T,=T;

(p21 VZ)
(P4, V4 Adiabatic (q =0) EoS |T -V’™! = const| y =c,/c,

Adiab. expansion/compr. 2> V,/V;= V3/V,
9 V2/V1=V3/V4

(p3l V3)
P
Energy balance: w = q; + q,> O Vv q q
on isothermal portions: w+q=0 "Entropy" |-t =— 2| =-AS, = AS,
Adiabatic works cancel T T,
q|=—w, = v, p dvV=R:[T |In Ve >0 - Entropy is conserved in reversible
A .
=RT, NV Vi cyclic processes: AS, +AS, =0.
q,|=—Ww, :IV“ p-dvV =—R-[T,|-In Vs <0 — S =state function (descriptor)
Vs, V4

: Oa
Reversible adiabatic exp./compr.: AS = q/T=0 | | FOrany process: AS, = él' :
since g= 0.

Irreversible adiabatic exp./compr.: AS + 0. = sign for reversible A— B only.




qh= ASTh

. —W _ qh T qc
Entropy bc = v a q
|AS| = const " "
-Ww = qy+q.=AS(T,- T.) Ec :1+$ SHE LF —1
o T, 7

gq.= -AS'T,

Efficiency of Carnot Engines

Efficiency of an ideal Carnot engine

Efficiency of a realistic Carnot-type engine

P

’ .

must be lower than .

« All engines based on pV processes can be
simulated by a combination of Carnot
processes.

 No thermodynamic (pV) engine can have
an efficiency larger than e.

Typical thermal engines have efficiencies of |gyerm ~ 0-3!




Pressure Units

pascal bar technical atmosphere
Vo
Pa bar at

1Pa =1 NIm? 1077 1.0197x107°

1 bar 10° = 10° dyn/cm? 1.0197

1at 0.980665 x10° 0.980665 = 1 kplem?

1 atm 1.01325 x10° 1.01325 1.0332
1Torr 133.3224 1.333224x107° 1.359551x10™°

1 psi 5.8948x10° 5.8948x1072 7.03069x107
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