
Agenda: TD of Dilute Gases, Simple Processes

• Fundamental ideal gas laws, 
          Equations of state (EoS)
          Isothermal expansion/compression

      Adiabatic expansion/compression

• Circular processes
      Work, heat, and entropy in Carnot processes
         Carnot, Kelvin/Clausius 2ndLTD

 Thermodynamic driving potentials

• Equation of state of real gases
         Van der Waals & other models
         Activity, fugacity
         Phase equilibria 

• Statistical Mechanics
 Quantum statistics
 Partition functions

Reading 

Assignments

Weeks 6 & 7

LN IV.1-4: 

Kondepudi Ch. 5.1-

5.3, 6.1-6.3. 

McQuarrie & Simon 

Ch. 2, 5, 6, 7.1-7.4

Math Chapter B, C 

             



Entropy & Energy in Spontaneous Processes

Spontaneous processes = dissipation = equilibration processes are 
driven by entropy flow S > 0. Reversible processes require S  0

W. Udo Schröder, 2025
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Microscopic statistical entropy is formulated in terms of actual population 

probabilities {pi} of  accessible configurations (multi-particle states)
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Entropy and Energy State Functions

Spontaneous processes = dissipation = equilibration processes are 
driven by entropy flow S > 0. Reversible processes require S  0

W. Udo Schröder, 2025
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The (Ideal-Gas) Equation of State

Hyperplane of 
Equilibrium States

A:  p(V,T)= n·R·T/V

A

State functions p, V, T,… . Molar p(V,T) hyper-plane (monotonic) contains all possible gas 
states A. There are no other states of the gas.

Ideal Gas Constant R

R = 0.0821 liter·atm/mol·K 

R = 8.3145 J/mol·K

R = 8.2057 m3·atm/mol·K

R = 62.3637 L·Torr/mol·K or    

      L·mmHg/mol·

W. Udo Schröder, 2025
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p·V = n·R·T; n=# moles, T→ U     
Non-interacting → Only gas phase!
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The Adiabatic Equation of State

q = 0
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Adiabatic expansion means (here) no 
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Circular Processes on EoS Hyperplane

A

B

Compression C → D along

isotherm 

D

C

Expansion A→ B along 

Isotherm 400
h

T K

300
c

T K

A circular process 
   A→B→C→D→A 

   on the EoS hyperplane 

returns the IG system to its 
initial state A after a 
combination of slow 
(=reversible) expansion and 
compression processes.

Expand @Th 

Th p 

F 

A 

Contract @Tc 

Tc p 

F 

A 

Heating Th  > Tc Cooling 

Heat and cool the working IG volume @ specific 
times → Cyclic thermal engine

P V R T = 

Ideal Gas Constant R

R = 0.0821 liter·atm/mol·K 

R = 8.3145 J/mol·KW. Udo Schröder, 2025
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w = - area under curve P(V) (1 mole) 
Total expansion work (V1 →V2) reduces 

internal energy (cools):

Isothermal Expansion/Compression

W. Udo Schröder, 2025
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Compress 1 mole at p=const. 
 

Heat transfer

Total heat transfer (1 →2) 

Isobaric Compression

( .) : p p Vfor p con REnthalpy change H C Cst T C→=   ==  +

W. Udo Schröder, 2025
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Inverse process: heating at constant p, e.g.,  p=patm , 
leads to expansion, V2 → V1>V2  →  drives piston out.
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Isochoric (V = const.) decompression 
→  of 1 mole w =-pV=0  

Heat transfer

Total energy change (1 →2) 

Isochoric Decompression
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Inverse process: heating at constant V, leads to increased temperature 
and pressure.



1) Isothermal expansion at T1=const. 
2) Isochoric decompression at V2=const., 
3) Isothermal compression at T2 =const. 
4) Isochoric compression V1=const., 

→   Work-Heat Balance:

1-2 gas does work         -w1 =  q1;    U = 0 

2-3 gas is cooled            q < 0;          U < 0 

3-4 gas is compressed   w2 = - q2; U = 0 

4-1  gas is heated           q > 0;  U > 0

Total internal energy: U = 0  (cyclic) 

Total heat absorbed:    q = q1+q2=-w > 0

Total work by engine : w = w1+ w2  < 0 

Thermal Engine: Expansion-Compression Cycles

In one cycle the gas absorbs net heat 
energy and does the net work, 

w = w1 + w2 = -q = CV∙[T2-T1] 

Not all absorbed heat is converted, 
some must be dumped as waste heat.

V1 V2

pV-work w=-p·V
1

2
4

3

Ideal-gas system (N particles) absorbing external heat (q>0) can produce mechanical 
work (w<0) on surroundings. Continuous operation requires cyclic process (in p-V-T). 
→ Needs good contacts to heat bath @T1 and heat sink @T2 → reversible processes

2 2

3

2
BU N k T 

1 1

3

2
BU N k T 

Sign convention: Internal energy gain or loss

W. Udo Schröder, 2025
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Isothermal expansion     at Th=T1 
Adiabatic expansion     Th→ Tc=T2

Isothermal compression at  Tc=T2 <Th 
Adiabatic compression  Tc→ Th=T1 

Carnot Engine Cycles
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Energy balance: w = q1 + q2 > 0
on isothermal portions: w+q=0
Adiabatic works cancel 

Adiab. expansion/compr. → V4/V1= V3/V2

             → V2/V1=V3/V4

W. Udo Schröder, 2025
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Typical thermal engines have efficiencies of  therm ~ 0.3.

Efficiency of Carnot Engines

Efficiency  of an ideal Carnot engine

Tc

Th

-w = qh+qc=S·(Th- Tc) 

qh= S·Th

qc= -S·Tc
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Entropy
|S| = const

• Efficiency of a realistic Carnot-type engine 
must be lower than C.

• All engines based on pV processes can be 
simulated by a combination of Carnot 
processes.

• No thermodynamic (pV) engine can have 
an efficiency larger than  C.

W. Udo Schröder, 2025
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Pressure Units
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