__Agenda: Kinetics and Transport in Multiparticle Systems

Fundamental ideal gas laws, Equation of state (EoS)

Reading
Assignments
Weeks 5 & 6

LN IV.1-4:

Kondepudi Ch. 1-3.
Additional Material

McQuarrie & Simon
Ch. 2,5
Math Chapter B, C



Energy Equilibration By Heat Exchange

Composite System
CS=Sys, Sys,

dP. /dE,dE, = 0

Constant energy E=E;+E,+E5; > Search for the most likely
final energy partition E,/E,/E;. For each spontaneous
exchange of heat —Aq;=AE,+AE; - increase exc. P.s

Equilibrium partition {E,, ..., E,} maximizes excited Qg

1 dQ (E) : dimension | ]
s n» n2 —const. function (E= ) E
(@) dE ( Zn: ) =1/Energy

n n

Plausible Ansatz:

d 1 dE
"d—E\Ln QYCS(E)}:const.«E))oc [> dS(E)/kocﬁ

K-T
Def.=S/k > Entropy =deg. disorganization

dE =T -dS ds = dq _ Spont. Heat Transfer
T Temperature

Spontaneous energy redistribution requires
entropy increase AS>0 (opposite is not true!)



Entropy and Energy at Equilibrium

Spontaneous equilibration of jl> ;—ELnQ(E,N)=w=CO”St(E’N)

systems in thermal contact

Dimension [Const(E,N)]= 1/energy.

Material & Size independence - Const(E,N) = Intensive function
(like <E>) depends on total energy E supplied as heat & total number of particles.

Obvious intensive energy variables: Mean energy per particle ~ temperature T
<E>N —E/N 2 kg - T

Previously: energy content of system of N independent particles:

. . .. ds d 1 =Simplest form compatible
Adoptintensive Const.(E,N) with 9 d_EkB -LnQ(E) o = S extensive

E - .
S(E)szLnQ:X+?—> Distributed E—AQ=T S
heat energy

Set integration constant =0




Entropy and Energy at Equilibrium

Spontaneous equilibration of d dS(E,N)
systems in thermal contact jl> ELnQ(%N): dE :%(E’N)

|
E Dimension [Const(E,N)]= 1/energy.

heat

. as d 1
Function Const(E,N) = = =— K, - LnQ(E) = —  simplest E-dependence compatible

S(E,...N)=k,-Ln O (Eheat):%with S,=5(0):=0

Since O, , =Q,-Q, and Ln Q,_, =LnQ, + LnQ, Entropy S scales with size >S extensive

Spontaneous heat
re —distribution @T

A(E)=Aq —>|AS = Ad _ of Distributed heat energy[E =T -S

Q. _ -
:>AS S — S, =kKg-Ln| —" Q _pOpquated (exc|ted)-
Q.. )| configurations (conformations)

Equilibration processes are driven by entropy flow AS > 0




Example: Entropy Gain in Spontaneous Gas Mixing

In: Separated Gases

S, =n-R-Ln(V,/v)>0

Initial
Fin: Mixed Gases

S - gain by individual gas components — Q. «V. volume

Entropy is extensive (additive). —»conponents add

n. = number of moles i
v =scale

Gas const. R =6.022 -10% -k, =8.31J/mol

Final

n=R-D n-Ln(V/v) 2>S;, =R-Ln(V,,/v)-3"n

S=-R. L
Z n n(VﬁnJ>O

Spontaneous
No heat exchange

Total #moles n=n=

Y n;total vol V =>'V,



Formulation Gain in Microscopic Entropy Notation

In: Separated Gases

Spontaneous
J >0 No heat exchange

Vi
AS=-R-> n -Ln(v—

fin

Total #moles n=>"n;; total volume V =)'V,

ool

Relative abundance (population probability)

Fin: Mixed Gases

for particle type i — p. = L Vi <1
n VvV

AS=-n-R-> p -Lnp; | n moles

AS =-N-k;- > p,-Lnp, | N particles




Entropy of Mixing: Example

One mole each of two equivalent ideal gases, A=0, and B=H,, in their respective
halves of a separated container at P, = Pg= 1atm, T, = Ty = 298K

|:> >P-SPACES 5 "w v, and @, o« V, No change in energy
Aq=0

|:> When partition is removed, the gases will mix.

Total n = 2 moles ; Mole fractions: n,/n=ng/n = 0.5.
-> probabilities are p, = pg; = 0.5 also in state space

- “Entropy of Mixing”

AS. =-nR {”—A -Ln (”—Aj + 08 (”—Bj} _
n n n n

=-2R{0.5-Ln(0.5)+0.5-Ln(0.5)} =11.5J/mol -K >0

Vit Vg, T Entropy is gained €=» mixing occurs spontaneously.

A AQ .
AS = a9 or AS > a9 in spontaneous processes
Universal Gas Constant I T

R=8.31J/mol-K Mixed gases are difficult to unmix (costs energy)!



Entropy Flow in Spontaneous Processes

AS = AT_q or AS > % in spontaneous processes

AS > 24
=

Equilibration processes are driven by entropy flow AS > 0

Equilibrated systems are at maximum entropy.
Their evolution does not rely on entropy flow=> AS = 0

Processes connecting equilibrated systems are reversible.




Thermodynamic Energies & Driving Potentials

Internal structural energy of 1mole material :

extensive (additive) state function U

Enthalpy Structural Energy plus pressure —volume work

Example comp(reagl +reag2) —> H_,, =H

extensive state function H=U +P -V — AH\p =AU+ p-dV
+ H

reag2

+ AHI’XI’I

comp reagl

Reference energy H° @ standard state T =25°C, P = 1bar « large databases
H® = 0 for pure elemental substances (incl phase)

\(r <

G \f
i \{Q

equilibrium

— H°

reagents

Energy gain per product mole in reaction|AH® = H?°

rxn products

Helmholtz free energy A=U-T -S used @ const V, T
System will do spontaneously : w = AA <0

process process

Il.'\ va ()

tf Gibbs free energy G=H-T-S used @ const p, T

System will do spontaneously : w = AG <0

process process

4

Reaction Variable



Agenda: TD of Dilute Gases, Simple Processes

* Fundamental ideal gas laws,
Equations of state (EoS)
Isothermal expansion/compression
Adiabatic expansion/compression

Reading
Assignments
Weeks 5 & 6

LN IV.1-4:

Kondepudi Ch. 1-3.
Additional Material

McQuarrie & Simon
Ch. 2,5
Math Chapter B, C



Thermodynamics: Ideal-Gas Equations of State EoS

Robert Boyle, Guillaume Amontons, Gay-Lussac, Dalton,..
Response of dilute gases of specified amounts (#¥moles = n, Avogadro)

Boyle's Law P(V)oc1/V or |-V =const(n,T)

Amontons' (Gay —Lussac's) Law |P(T) :P(O)-[1+a-TC]oc T

Charles' Law V(T,)=V(0°C)-[1+a T | »V(T)ocT |(Kelvin)

Compression

I a = 3.66-10-3/0C » 1/273°C > absolute temperature T
1 £
= : EoS of Ideal Gases
p
. Isentropic T=const. |P-V=n-R-T=N-k,-T

Polytropic EoS P-V’” =const;
Polytrope coefficient y =C,/C,

T-V'™ =const

Joseph Louis
Gay-Lussac
WyESEECT Thermal energy content|Q=C,, -T| Empirical Law

2 Specific Heats @P = const. or V = const.




The (Ideal-Gas) Equation of State

p:'V =n:R-T; n=# moles, T=> U
Non-interacting - Only gas phase! Hyperplane of

Equilibrium States

\—-
1-10 A ORI
I\ .‘-m-w'-q \"‘;‘\‘\\\\“\ Ideal Gas Constant R
IR _
S \\5*\‘\\\%0\&;&{ R = 0.0821 liter-atm/mol-K
ARG R = 8.3145 J/mol-K
5_104 R = 8.2057 m3-atm/mol-K
R = 62.3637 L-Torr/mol-K or
7 5.10% L-mmHg/mol-
*

Vi) 100 L A& °

State functions p, V, T,... . Molar p(V,T) hyper-plane (monotonic) contains all possible gas
states A. There are no other states of the gas.



The Adiabatic Equation of State

p:V = n:R:-T; n=# moles, T=> U
Non-interacting -2 Only gas phase!

Relation between internal energy of
ideal gas and pressure-volume relation.
Reversible adiabatic expansion means
(here) no exchange of heat energy,
dg=0, and no entropy change dS=0

dg=0—-5dS5=0,dU =0
Calculation for 1 mole ideal gas
O=dg=dU+p-dV - dU =-p-dV

du(V,T) :M{%J dT =C, -dT
T aT 4

0-C, - dT+p-dv=C,-dT + =T .qv

0 T -V’ = const.

Cv-d—T+Rd—V=O—>
% T C
c, dT dv
e AL 2 g
s -1y

d_T+(CP—CV]dV _

2 p -V’ = const.
T” . p*7 = const.




__Isothermal Expansion/Compression

w = - area under curve p(V)
Total work (1 22):

- Use p-V =R-T for expanding 1 mole

w=—[ pv)dv :—R-lez(i/—vz

:R-T-In[£}<0
V2

w < 0 implies system does work

5 PR on surroundings

: But AU o AT =0 — g > 0 (absorbs heat)
1.LTD:

p:

— g =AU —w:—w:—R-T-In(£j>0

=0 2



Reversible Isobaric Compression

Internal energy change

Compress 1 mole at p=const.
Work done on system::

2 2
w:-j1 p(V)dV =—p-j1 dVv >0
=—p-AV =—R-AT = Shaded Area

AT < 0 system cools by emitting
q=C,-AT ZER.M:_ﬁw
2 R 2

Enthalpy change ( for p =const.):
AH =C_-AT =C -[T,-T;]=0<0
= emitted heat (internal energy)
AU =q+w=(C —R)-AT

=C, '[Tz_T1]<O

Inverse process: heating at constant p, e.g., p=p.. , leads to
expansion, V, 2> V,>V, 2 drives piston out.



Reversible Decompression

1')‘r q=C, -AT<0
pi &

P2

Isochoric (V = const.) decompression
- of 1 mole w =-pAV=0

Work done on system w=0
But AU < 0, — system emits heat

q=C, -AT =C, [T, -T,]

1. Law of Thermodynamics :

AU =q+w=q =C, -[T, -T,] <0

Enthalpy change

AH =AU +A(pV) =(C, +R)-AT
=C,-[T,-T,] (always=C_-AT)

NOTE : AH # q (since p = const)

Inverse process: heating at constant V, leads to increased temperature

and pressure.



Reversible Circular Processes on EoS Hyperplane

Ideal-Gas EOS P.V =R.-T

[
p(Pa) A-> B along
1103 |= 400K

---------
ANUYA Y VWAV

Compression C > D along
0— isotherm 7. = 300K

V(1) 100L N

Ideal Gas Constant R

A circular process

A->B->C->D->A

on the EoS hyperplane

Expand @Thn Contract @Tec

| F L F

Th

b

p T. P

Heating T,, > T Cooling

r
b \

( >
|
EA >

returns the IG system to its
initial state A after a
combination of slow
(=reversible) expansion and
compression processes.

R = 0.0821 liter-atm/mol-K Heat and cool the working IG volume @ specific
| R = 8.3145 J/mol-K times = Cyclic thermal engine



Thermal Engine: Expansion-Compression Cycles

Ideal-gas system (N particles) absorbing external heat (g>0) can produce mechanical
work (w<0) on surroundings. Continuous operation requires cyclic process (in p-V-T).
- Needs good contacts to heat bath @T, and heat sink @T, - reversible processes

A 1 1) Isothermal expansion at T;=const.

P pV-work w=-p-AV I 2) Isochoric decompression at V,=const.,
3) Isothermal compression at T, =const.
4) Isochoric compression V,=const,,

Sign convention: Internal energy gain or loss

> Work-Heat Balance:

1-2 gas does work -W; = qq; AU =0
2-3 gas is cooled q< 0; AU < O
3-4 gas is compressed w,=-q,; AU =0

V1 Vz 4-1 gas is heated q> 0; AU > 0
In one cycle the gas absorbs net heat
energy and does the net work,
W=W, +W, =-q = Cy[To-T,] Total heat absorbed: | g = g,+g,=-w > 0

Total internal energy: AU = 0 (cyclic)

Not all absorbed heat is converted, Total work by engine jjw = w;+ w, <0

some must be dumped as waste heat.



Carnot Engine Cycles

Pl (p,, Vy) Isothermal expansion  atT,=T,
Adiabatic expansion T,> T.=T,
Isothermal compression at T.=T, <T,
Adiabatic compression T.> T,=T;

(p21 VZ)
(P4, V4 Adiabatic (q =0) EoS |T -V’™! = const| y =c,/c,

Adiab. expansion/compr. 2> V,/V;= V3/V,
9 V2/V1=V3/V4

(p3l V3)
P
Energy balance: w = q; + q,> O Vv q q
on isothermal portions: w+q=0 "Entropy" |-t =— 2| =-AS, = AS,
Adiabatic works cancel T T,
q|=—w, = v, p dvV=R:[T |In Ve >0 - Entropy is conserved in reversible
A .
=RT, NV Vi cyclic processes: AS, +AS, =0.
q,|=—Ww, :IV“ p-dvV =—R-[T,|-In Vs <0 — S =state function (descriptor)
Vs, V4

: Oa
Reversible adiabatic exp./compr.: AS = q/T=0 | | FOrany process: AS, = él' :
since g= 0.

Irreversible adiabatic exp./compr.: AS + 0. = sign for reversible A— B only.




qh= ASTh

. —W _ qh T qc
Entropy bc = v a q
|AS| = const " "
-Ww = qy+q.=AS(T,- T.) Ec :1+$ SHE LF —1
o T, 7

gq.= -AS'T,

Efficiency of Carnot Engines

Efficiency of an ideal Carnot engine

Efficiency of a realistic Carnot-type engine

P

’ .

must be lower than .

« All engines based on pV processes can be
simulated by a combination of Carnot
processes.

 No thermodynamic (pV) engine can have
an efficiency larger than e.

Typical thermal engines have efficiencies of |gyerm ~ 0-3!




Pressure Units

pascal bar technical atmosphere
Vo
Pa bar at

1Pa =1 NIm? 1077 1.0197x107°

1 bar 10° = 10° dyn/cm? 1.0197

1at 0.980665 x10° 0.980665 = 1 kplem?

1 atm 1.01325 x10° 1.01325 1.0332
1Torr 133.3224 1.333224x107° 1.359551x10™°

1 psi 5.8948x10° 5.8948x1072 7.03069x107
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