
Agenda: Kinetics and Transport in Multiparticle Systems

Dynamics of interacting multi-particle systems 

• Interaction energies
Dissipation via multiple scattering

• Probabilistic evolution 
Random walk and binomial distribution
Diffusion processes

 Maxwell-Boltzmann energy distributions
 Fluctuating (Langevin) dissipative forces
 

• Kinetics of dilute gases
Work and heat transfer 

 Flow of heat and radiation
 Laws of thermodynamics, thermodynamic ensembles, entropy
• Fundamental ideal gas laws, Equation of state (EoS)

Reading 

Assignments

Weeks 5 & 6

LN IV.1-4: 

Kondepudi Ch. 1-3. 

Additional Material

McQuarrie & Simon 

Ch. 2, 5

Math Chapter B, C 

             



Energy Equilibration By Heat Exchange

Thermal Contacts 

Constant energy E=E1+E2+E3 → Search for the most likely 

final energy partition E1/E2/E3. For each spontaneous 

exchange of heat –q1=E2+E3 → increase exc. PCS 
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Entropy and Energy at Equilibrium

Material & size independence → Const(E,N) = Intensive function 

(like <E>) depends on total energy E supplied as heat & total number of particles. 
    

Obvious intensive energy variables: Mean energy per particle ~ temperature T 

      Previously: energy content of system of N independent particles: = BN
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Entropy and Energy at Equilibrium
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Example: Entropy Gain in Spontaneous Gas Mixing

Vfin = V1+ V2+ V3

In: Separated Gases

Fin: Mixed Gases
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Formulation Gain in Microscopic Entropy Notation

In: Separated Gases

Fin: Mixed Gases
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Entropy of Mixing: Example

Total  n = 2 moles ;  Mole fractions:  nA/n = nB /n = 0.5. 
→ probabilities are pA = pB = 0.5 also in state space

→ “Entropy of Mixing” 

One mole each of two equivalent ideal gases, A=O2 and B=H2, in their respective 

halves of a separated container at PA = PB= 1atm, TA = TB = 298K 

 s.p. spaces     

               When partition is removed, the gases will mix.   

Entropy is gained ➔ mixing occurs spontaneously.

Mixed gases are difficult to unmix (costs energy)!
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Entropy Flow in Spontaneous Processes

Equilibration processes are driven by entropy flow S > 0

 
 =  

q q
S S in spontaneous processes

T
or

T


 

q
S

T

Equilibrated systems are at maximum entropy. 
Their evolution does not rely on entropy flow→ S  0

Processes connecting equilibrated systems are reversible. 
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W. Udo Schröder, 2023
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Agenda: TD of Dilute Gases, Simple Processes

• Fundamental ideal gas laws, 
          Equations of state (EoS)
          Isothermal expansion/compression

      Adiabatic expansion/compression

• Circular processes
      Work, heat, and entropy in Carnot processes
         Carnot, Kelvin/Clausius 2ndLTD

 Thermodynamic driving potentials

• Equation of state of real gases
         Van der Waals & other models
         Activity, fugacity
         Phase equilibria 

• Statistical Mechanics
 Quantum statistics
 Partition functions

Reading 

Assignments

Weeks 5 & 6

LN IV.1-4: 

Kondepudi Ch. 1-3. 

Additional Material

McQuarrie & Simon 

Ch. 2, 5

Math Chapter B, C 

             



Thermodynamics: Ideal-Gas Equations of State EoS 

Robert Boyle, Guillaume Amontons, Gay-Lussac, Dalton,.. 

Response of dilute gases of specified amounts (#moles = n, Avogadro)
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1627-1691
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1663-1705
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The (Ideal-Gas) Equation of State

Hyperplane of 
Equilibrium States

A:  p(V,T)= n·R·T/V

A

State functions p, V, T,… . Molar p(V,T) hyper-plane (monotonic) contains all possible gas 
states A. There are no other states of the gas.

Ideal Gas Constant R

R = 0.0821 liter·atm/mol·K 

R = 8.3145 J/mol·K

R = 8.2057 m3·atm/mol·K

R = 62.3637 L·Torr/mol·K or    

      L·mmHg/mol·

W. Udo Schröder, 2025
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Non-interacting → Only gas phase!
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The Adiabatic Equation of State

q = 0
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w = - area under curve p(V) 
Total work (1 →2):

Isothermal Expansion/Compression

W. Udo Schröder, 2025
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Compress 1 mole at p=const. 
 

Heat transfer

Total heat transfer (1 →2) 

Reversible Isobaric Compression
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Inverse process: heating at constant p,     e.g.,  p=patm , leads to 
expansion, V2 → V1>V2  →  drives piston out.
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Isochoric (V = const.) decompression 
→  of 1 mole w =-pV=0  

Heat transfer

Total energy change (1 →2) 

Reversible Decompression

2 1

2 1

2 1

0

0,

[ ]

1.

0

( ) ( )

[ ]

[ ]

( )

: ( )

V

V V

p p

V

Work done on system w

But U system emits heat

q C T C T T

Law of Thermodynamics :

q w q
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H T

C T T alw

since p const
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pV R

H q

=

  →

=   =  −
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 = +  = +  

=  − =  
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

 


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Inverse process: heating at constant V, leads to increased temperature 
and pressure.



Reversible Circular Processes on EoS Hyperplane

A

B

Compression C → D along

isotherm 

D

C

Expansion A→ B along 

Isotherm 400
h

T K

300
c

T K

A circular process 
   A→B→C→D→A 

   on the EoS hyperplane 

returns the IG system to its 
initial state A after a 
combination of slow 
(=reversible) expansion and 
compression processes.

Expand @Th 

Th p 

F 

A 

Contract @Tc 

Tc p 

F 

A 

Heating Th  > Tc Cooling 

Heat and cool the working IG volume @ specific 
times → Cyclic thermal engine

P V R T = 

Ideal Gas Constant R

R = 0.0821 liter·atm/mol·K 

R = 8.3145 J/mol·KW. Udo Schröder, 2025
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1) Isothermal expansion at T1=const. 
2) Isochoric decompression at V2=const., 
3) Isothermal compression at T2 =const. 
4) Isochoric compression V1=const., 

→   Work-Heat Balance:

1-2 gas does work         -w1 =  q1;    U = 0 

2-3 gas is cooled            q < 0;          U < 0 

3-4 gas is compressed   w2 = - q2; U = 0 

4-1  gas is heated           q > 0;  U > 0

Total internal energy: U = 0  (cyclic) 

Total heat absorbed:    q = q1+q2=-w > 0

Total work by engine : w = w1+ w2  < 0 

Thermal Engine: Expansion-Compression Cycles

In one cycle the gas absorbs net heat 
energy and does the net work, 

w = w1 + w2 = -q = CV∙[T2-T1] 

Not all absorbed heat is converted, 
some must be dumped as waste heat.

V1 V2

pV-work w=-p·V
1

2
4

3

Ideal-gas system (N particles) absorbing external heat (q>0) can produce mechanical 
work (w<0) on surroundings. Continuous operation requires cyclic process (in p-V-T). 
→ Needs good contacts to heat bath @T1 and heat sink @T2 → reversible processes

2 2

3

2
BU N k T 

1 1

3

2
BU N k T 

Sign convention: Internal energy gain or loss

W. Udo Schröder, 2025
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Isothermal expansion     at Th=T1 
Adiabatic expansion     Th→ Tc=T2

Isothermal compression at  Tc=T2 <Th 
Adiabatic compression  Tc→ Th=T1 

Carnot Engine Cycles

1

1 2

2 1
2

1 2

:

" "

:

0

(

.

)

.

A B
A B

Entropy S S

For any process

sign for reve

Entropy is conserved i

S state function descripto

n reversible
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q
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rsible

q

T T

q
S

T

A B o

r

s

nly

S S

→
→

 +  =

= − = 

= →

→ =

= −

 Reversible adiabatic exp./compr.: S = q/T= 0 
since q= 0.
Irreversible adiabatic exp./compr.: S  0. 

V

p

(p2, V2)

(p3, V3)

(p4, V4) work

(p1, V1)

T1

T2

q=0

q=0

 −=  ==1( 0)
p V

T V conA sdiabatic q Eo ctS c

2

1

1

4

3

2

1

3

4

2

1

2

1

2

1 ln 0

ln 0

=

=− = =   


 
=

 
 


=−  = −  



 






V

V
RT V

V

V

q
V

w

T

p dV R

w p d R
V

q V

T
V

V

Energy balance: w = q1 + q2 > 0
on isothermal portions: w+q=0
Adiabatic works cancel 

Adiab. expansion/compr. → V4/V1= V3/V2

             → V2/V1=V3/V4

W. Udo Schröder, 2025
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Typical thermal engines have efficiencies of  therm ~ 0.3.

Efficiency of Carnot Engines

Efficiency  of an ideal Carnot engine

Tc

Th

-w = qh+qc=S·(Th- Tc) 

qh= S·Th

qc= -S·Tc

11 1
h

c
C

h

h c
C

h h

c

T

h

q qw

q q

q

Tq

T




→

+−
= =

+ = − ⎯⎯⎯→=

Entropy
|S| = const

• Efficiency of a realistic Carnot-type engine 
must be lower than C.

• All engines based on pV processes can be 
simulated by a combination of Carnot 
processes.

• No thermodynamic (pV) engine can have 
an efficiency larger than  C.

W. Udo Schröder, 2025
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