Agenda: Kinetics and Transport in Multiparticle Systems

Dynamics of interacting multi-particle systems

- Interaction energies
 Dissipation via multiple scattering
- Probabilistic evolution
 Random walk and binomial distribution
 Diffusion processes
 Maxwell-Boltzmann energy distributions
 Fluctuating (Langevin) dissipative forces
- Kinetics of dilute gases
 Work and heat transfer
 Flow of heat and radiation
 Laws of thermodynamics, thermodynamic ensembles, entropy
- Fundamental ideal gas laws, Equation of state (EoS)

Reading Assignments Weeks 5 & 6 LN IV.1-4: Kondepudi Ch. 1-3. Additional Material McQuarrie & Simon Ch. 2, 5 Math Chapter B, C

Energy Equilibration By Heat Exchange

 \sim

Entropy and Energy at Equilibrium

Spontaneous equilibration of systems in thermal contact

$$\frac{d}{dE} Ln \Omega(E, N) = \frac{dS(E, N)}{dE} = \underline{Const}(E, N)$$

Dimension [Const(*E*,*N*)]= 1/energy.

Material & SiZE independence \rightarrow Const(E,N) = Intensive function (like $\langle E \rangle$) depends on total energy E supplied as heat & total number of particles.

Obvious intensive energy variables: Mean energy per particle ~ temperature T

Previously: energy content of system of *N* independent particles:

$$\langle E \rangle_{N} = E/N \triangleq k_{B} \cdot T$$

Adopt intensive Const.(E, N) with
$$\frac{dS}{dE} = \frac{d}{dE} k_B \cdot Ln\Omega(E) \propto \frac{1}{T}$$
 =Simplest form compatible
 $S(E) = k_B Ln \ \Omega = 4 + \frac{E}{T} \rightarrow$ Distributed
Set integration constant =0

Entropy and Energy at Equilibrium

Spontaneous equilibration of systems in thermal contact $\boxed{\frac{d}{dE} Ln \Omega(E, N) = \frac{dS(E, N)}{dE} = \underline{Const}(E, N)}_{Ln \Omega(E) \propto \frac{1}{T}}$ Dimension [Const(E,N)]= 1/energy. Function Const(E, N) = $\frac{dS}{dE} = \frac{d}{dE} k_B \cdot Ln \Omega(E) \propto \frac{1}{T}$ Simplest E-dependence compatible $S(E_{heat}, N) = k_B \cdot Ln \Omega_N(E_{heat}) = \frac{E_{heat}}{T}$ with $S_0 = S(0) := 0$

Since $\Omega_{1+2} = \Omega_1 \cdot \Omega_2$ and $Ln \ \Omega_{1+2} = Ln \Omega_1 + Ln \Omega_2$ Entropy **S** scales with size \rightarrow **S** extensive

Spontaneous heat re-distribution @T : $\Delta \langle E \rangle = \Delta q \rightarrow \Delta S = \frac{\Delta q}{T} > 0$ Distributed heat energy $E = T \cdot S$

$$\Delta S = S_{fin} - S_{in} = k_B \cdot Ln\left(\frac{\Omega_{fin}}{\Omega_{in}}\right)$$

 $\Omega = populated (excited)$ configurations (conformations)

Equilibration processes are driven by entropy flow $\Delta S > 0$

Example: Entropy Gain in Spontaneous Gas Mixing

In: Separated Gases

S - gain by individual gas components $\rightarrow \Omega_i \propto V_i$ volume Entropy is extensive(additive). \rightarrow conponents add

 $S_{i} = n_{i} \cdot R \cdot Ln(V_{i}/\upsilon) > 0$ $n_{i} = number of moles i$ $\upsilon = scale$ $Gas \ const. \ R = 6.022 \cdot 10^{23} \cdot k_{B} = 8.31 \text{J/mol}$

Initial

$$S_{in} = R \cdot \sum_{i} n_{i} \cdot Ln(V_{i}/\upsilon) \implies S_{fin} = R \cdot Ln(V_{fin}/\upsilon) \cdot \sum_{i} n_{i}$$

$$\Delta S = -R \cdot \sum_{i} n_{i} \cdot Ln\left(\frac{V_{i}}{V_{fin}}\right) > 0$$

Spontaneous ∕[∧] No heat exchange

Total #moles
$$n = n = \sum_{i} n_i$$
; total vol $V = \sum_{i} V$

In: Separated Gases

$$\Delta S = -R \cdot \sum_{i} n_{i} \cdot Ln\left(\frac{V_{i}}{V_{fin}}\right) > 0$$

Spontaneous ∕[¬] No heat exchange

$$Total #moles n = \sum_{i} n_{i}; total volume V = \sum_{i} V_{i}$$
$$\Delta S = -n \cdot R \cdot \sum_{i} \left(\frac{n_{i}}{n}\right) \cdot Ln\left(\frac{V_{i}}{V}\right)$$

Relative abundance (population probability)

for particle type
$$i \rightarrow p_i = \frac{n_i}{n} = \frac{V_i}{V} < 1$$

$$\Delta S = -n \cdot R \cdot \sum_{i} p_{i} \cdot Ln p_{i}$$
 n moles

$$\Delta S = -N \cdot k_{\rm B} \cdot \sum_{i} p_{i} \cdot Ln p_{i}$$
 N particles

Entropy of Mixing: Example

One mole each of two equivalent ideal gases, $A=O_2$ and $B=H_2$, in their respective halves of a separated container at $P_A = P_B = 1$ atm, $T_A = T_B = 298$ K

$$\varpi_{A} \propto V_{A}$$
 and $\varpi_{B} \propto V_{B}$

When partition is removed, the gases will mix.

No change in energy $\Delta q = 0$

 $V_A, T = V_B, T$

s.p. spaces

Universal Gas Constant R=8.31*J/mol·K*

 $V_A + V_B, T$

Total n = 2 moles; Mole fractions: $n_A/n = n_B/n = 0.5$. \rightarrow probabilities are $p_A = p_B = 0.5$ also in state space

→ "Entropy of Mixing"

$$\Delta S_{mix} = -nR\left\{\frac{n_A}{n} \cdot Ln\left(\frac{n_A}{n}\right) + \frac{n_B}{n} \cdot Ln\left(\frac{n_B}{n}\right)\right\} = -2R\left\{0.5 \cdot Ln(0.5) + 0.5 \cdot Ln(0.5)\right\} = 11.5 \, J/mol \cdot K > 0$$

Entropy is gained $\leftarrow \rightarrow$ mixing occurs spontaneously.

 $\sum \Delta S = \frac{\Delta q}{T} \text{ or } \Delta S > \frac{\Delta q}{T} \text{ in spontaneous processes}$

Mixed gases are difficult to unmix (costs energy)!

Entropy Flow in Spontaneous Processes

$$\Delta S = \frac{\Delta q}{T}$$
 or $\Delta S > \frac{\Delta q}{T}$ in spontaneous processes

$$\Delta S \geq \frac{\Delta q}{T}$$

Equilibration processes are driven by entropy flow $\Delta S > 0$

Equilibrated systems are at maximum entropy. Their evolution does not rely on entropy flow $\rightarrow \Delta S \equiv 0$ Processes connecting equilibrated systems are reversible.

Thermodynamic Energies & Driving Potentials

Internal structural energy of 1mole material : extensive (additive) state function U Enthalpy Structural Energy plus pressure – volume work extensive state function $H = U + P \cdot V \rightarrow \Delta H|_p = \Delta U + p \cdot dV$ Example $comp(reag1 + reag2) \rightarrow H_{comp} = H_{reag1} + H_{reag2} + \Delta H_{rxn}$ Reference energy H^0 @ standard state $T = 25^{\circ}C$, $P = 1bar \leftarrow large$ databases $H^0 = 0$ for pure elemental substances (incl phase)

Energy gain per product mole in reaction $\Delta H_{rxn}^0 = H_{products}^0 - H_{reagents}^0$

Helmholtz free energy $A = U - T \cdot S$ used @ const V, T System will do spontaneously : $w_{process} = \Delta A_{process} < 0$

Gibbs free energy $G = H - T \cdot S$ used @ const p, TSystem will do spontaneously : $w_{process} = \Delta G_{process} < 0$

Cohnäden 2022

Agenda: TD of Dilute Gases, Simple Processes

- Fundamental ideal gas laws, Equations of state (EoS) Isothermal expansion/compression Adiabatic expansion/compression
- Circular processes
 Work, heat, and entropy in Carnot processes
 Carnot, Kelvin/Clausius 2ndLTD
 Thermodynamic driving potentials
- Equation of state of real gases
 Van der Waals & other models
 Activity, fugacity
 Phase equilibria
- Statistical Mechanics Quantum statistics Partition functions

Reading Assignments Weeks 5 & 6 LN IV.1-4:

Kondepudi Ch. 1-3. Additional Material

McQuarrie & Simon Ch. 2, 5 Math Chapter B, C

Thermodynamics: Ideal-Gas Equations of State **EoS**

Robert Boyle, Guillaume Amontons, Gay-Lussac, Dalton,.. Response of dilute gases of specified amounts (#moles = *n*, *Avogadro*)

Boyle's Law $P(V) \propto 1/V$ or $P \cdot V = const(n,T)$

Amontons' (Gay – Lussac's) Law $P(T) = P(0) \cdot [1 + \alpha \cdot T_c] \propto T$

Charles' Law $V(T_c) = V(0^0 C) \cdot [1 + \alpha \cdot T_c] \rightarrow V(T) \propto T$ (Kelvin) Compression

 $\alpha \approx 3.66 \cdot 10^{-3} / {}^{\circ}C \approx 1 / 273^{\circ}C \rightarrow \text{absolute temperature } T$

EoS of Ideal Gases

Isentropic T=const.

$$P \cdot V = n \cdot R \cdot T = N \cdot k_{\scriptscriptstyle B} \cdot T$$

Polytropic EoS Polytrope coefficient $\gamma = C_P / C_V$

$$P \cdot V^{\gamma} = const;$$
$$T \cdot V^{\gamma-1} = const$$

2 Specific Heats @P = const. or V = const.Thermal energy content $Q = C_{P,V} \cdot T$ Empirical Law

The (Ideal-Gas) Equation of State

State functions p, V, T,... Molar p(V,T) hyper-plane (monotonic) contains all possible gas states **A**. There are no other states of the gas.

The Adiabatic Equation of State

 $p \cdot V = n \cdot R \cdot T$; n = # moles, $T \rightarrow U$ Non-interacting \rightarrow Only gas phase!

Relation between internal energy of ideal gas and pressure-volume relation. Reversible adiabatic expansion means (here) no exchange of heat energy, dq=0, and no entropy change dS=0

 $dq = 0 \rightarrow dS = 0, \ dU = 0$ Calculation for 1 mole ideal gas $0 = dq = dU + p \cdot dV \rightarrow dU = -p \cdot dV$ $dU(V,T) = \underbrace{\partial U}_{\partial V} dV + \left(\frac{\partial U}{\partial T}\right)_{V} dT = C_{V} \cdot dT$ $0 = C_{V} \cdot dT + p \cdot dV = C_{V} \cdot dT + \frac{R \cdot T}{V} \cdot dV$

$$C_{V} \cdot \frac{dT}{T} + R \frac{dV}{V} = 0 \rightarrow \frac{dT}{T} + \left(\frac{C_{P} - C_{V}}{C_{V}}\right) \frac{dV}{V} = 0$$

$$V = \frac{C_{P}}{C_{V}}; \quad \frac{dT}{T} + (\gamma - 1) \frac{dV}{V} = 0$$

$$T \cdot V^{\gamma - 1} = const.$$

$$P \cdot V^{\gamma} = const.$$

$$T^{\gamma} \cdot P^{1 - \gamma} = const.$$

w = - area under curve p(V)Total work $(1 \rightarrow 2)$:

Use $p \cdot V = R \cdot T$ for expanding 1 mole

$$w = -\int_{1}^{2} p(V) dV = -R \cdot T \int_{1}^{2} \frac{dV}{V} =$$
$$= R \cdot T \cdot \ln\left(\frac{V_{1}}{V_{2}}\right) < 0$$

w < 0 implies system does work on surroundings

But $\Delta U \propto \Delta T = 0 \rightarrow q > 0$ (absorbs heat) 1. LTD:

$$\rightarrow q = \Delta U - w = -w = -R \cdot T \cdot \ln\left(\frac{V_1}{V_2}\right) > 0$$

Compress 1 mole at *p*=*const*.

Work done on system:

$$w = -\int_{1}^{2} p(V)dV = -p \cdot \int_{1}^{2} dV > 0$$
$$= -p \cdot \Delta V = -R \cdot \Delta T = Shaded Area$$

 $\Delta T < 0 \text{ system cools by emitting}$ $q = C_p \cdot \Delta T = \frac{5}{2}R \cdot \frac{p \cdot \Delta V}{R} = -\frac{5}{2}w$ Enthalpy change (for p = const.): $\Delta H = C_p \cdot \Delta T = C_p \cdot [T_2 - T_1] = q < 0$ = emitted heat (internal energy) $\Delta U = q + w = (C_p - R) \cdot \Delta T$ $= C_V \cdot [T_2 - T_1] < 0$

Inverse process: heating at constant p, e.g., $p=p_{atm}$, leads to expansion, $V_2 \rightarrow V_1 > V_2 \rightarrow drives piston out$.

Internal energy change

Reversible Decompression

Isochoric (V = const.) decompression \rightarrow of 1 mole w =-p\Delta V=0

Work done on system w = 0But $\Delta U < 0$, \rightarrow system emits heat $q = C_V \cdot \Delta T = C_V \cdot [T_2 - T_1]$

1. Law of Thermodynamics : $\Delta U = q + w = q = C_V \cdot [T_2 - T_1] < 0$ Enthalpy change $\Delta H = \Delta U + \Delta (pV) = (C_V + R) \cdot \Delta T$ $= C_p \cdot [T_2 - T_1] \quad (always = C_p \cdot \Delta T)$ NOTE : $\Delta H \neq q$ (since $p \neq const$)

Inverse process: heating at constant *V*, leads to increased temperature and pressure.

Reversible Circular Processes on EoS Hyperplane

W. Udo **Behrrod8₀,31,45 J/mol·K**

Heat and cool the working IG volume @ specific times \rightarrow Cyclic thermal engine

Thermal Engine: Expansion-Compression Cycles

Ideal-gas system (N particles) absorbing external heat (q>0) can produce mechanical work (w<0) on surroundings. Continuous operation requires cyclic process (in p-V-T). \rightarrow Needs good contacts to heat bath $@T_1$ and heat sink $@T_2 \rightarrow$ reversible processes

In one cycle the gas absorbs net heat energy and does the net work,

 $w = w_1 + w_2 = -q = C_V \cdot [T_2 - T_1]$

Not all absorbed heat is converted, some must be dumped as waste heat.

Isothermal expansion at T₁=const.
 Isochoric decompression at V₂=const.,
 Isothermal compression at T₂ =const.
 Isochoric compression V₁=const.,

Sign convention: Internal energy gain or loss

→ Work-Heat Balance:		
1-2 gas does work	$-w_1 = q_1;$	$\Delta U = 0$
2-3 gas is cooled	q < 0;	∆U < 0
3-4 gas is compressed	$w_2 = -q_2;$	$\Delta U = 0$
4-1 gas is heated	q > 0;	∆ U > 0
Total internal energy: $\Delta U = 0$ (cyclic)		
Total heat absorbed:	$q = q_1 + q_2 =$	-w > 0
Total work by engine :	$\boldsymbol{w} = \boldsymbol{w}_1 + \boldsymbol{w}_2$	2 < 0
•		

Carnot Engine Cycles

V

Energy balance: $w = q_1 + q_2 > 0$ on isothermal portions: w+q=0 Adiabatic works cancel

$$\frac{q_1}{q_1} = -w_1 = \int_{V_1}^{V_2} p \, dV = R \cdot \frac{T_1}{T_1} \cdot \ln\left(\frac{V_2}{V_1}\right) > 0$$

$$\frac{q_2}{q_2} = -w_2 = \int_{V_3}^{V_4} p \cdot dV = -R \cdot \frac{T_2}{T_2} \cdot \ln\left(\frac{V_3}{V_4}\right) < 0$$

Reversible adiabatic exp./compr.: $\Delta S = q/T = 0$ since q = 0. Irreversible adiabatic exp./compr.: $\Delta S \neq 0$.

Adiabatic (q = 0) EoS $T \cdot V^{\gamma-1} = const$ $\gamma = c_p/c_v$ Adiab. expansion/compr. $\rightarrow V_4/V_1 = V_3/V_2$

 $T_h \rightarrow T_c = T_2$

"Entropy"
$$\frac{q_1}{T_1} = -\frac{q_2}{T_2} = -\Delta S_2 = \Delta S_1$$

 $\rightarrow V_2/V_1 = V_2/V_4$

Entropy is conserved in reversible *cyclic processes* : $\Delta S_1 + \Delta S_2 = 0$.

 $\rightarrow S = state function (descriptor)$

For any process: $\Delta S_{A \to B} \geq \frac{q_{A \to B}}{T}$ = sign for reversible $A \rightarrow B$ only.

Efficiency of Carnot Engines

Efficiency of an ideal Carnot engine

$$\mathcal{E}_{C} = \frac{-w}{q_{h}} = \frac{q_{h} + q_{c}}{q_{h}}$$
$$\mathcal{E}_{C} = 1 + \frac{q_{c}}{q_{h}} = 1 - \frac{T_{c}}{T_{h}} \xrightarrow{T_{h} \to \infty} 1$$

- Efficiency of a realistic Carnot-type engine must be lower than $\epsilon_{\rm C}$.
- All engines based on *pV* processes can be simulated by a combination of Carnot processes.
- No thermodynamic (*pV*) engine can have an efficiency larger than $\epsilon_{\rm C}$.

Pressure Units

V·T·E	pascal	bar	technical atmosphere	
	Pa	bar	at	
1 Pa	≡ 1 N/m ²	10 ⁻⁵	1.0197×10 ⁻⁵	
1 bar	10 ⁵	≡ 10 ⁸ dyn/cm ²	1.0197	
1 at	0.980665 ×10 ⁵	0.980665	≡ 1 kp/cm ²	
1 atm	1.01325 ×10 ⁵	1.01325	1.0332	
1 Torr	133.3224	1.333224×10 ⁻³	1.359551×10 ⁻³	
1 psi	6.8948×10 ³	6.8948×10 ⁻²	7.03069×10 ⁻²	