Agenda: Kinetics and Transport in Multiparticle Systems

Reading
Assignments
Weeks 5 & 6

LN IV.1-4:

Kondepudi Ch. 1-3.
Additional Material

McQuarrie & Simon
Ch.2,5
Fluctuating (Langevin) dissipative forces Math Chapter B, C

Work and heat transfer
Flow of heat and radiation
Laws of thermodynamics, thermodynamic ensembles, entropy
 Fundamental ideal gas laws, Equation of state (EoS)



Macroscopic Effects of Dissipative Energy Transfer

~—l_

AX = (u —Uy, ) Al piscussion Points

AV = AM - AX Collision layer, Effects of multiple collisions with Mm
Trends to push M - pV-work= conversion of random energy to
directed flow/motion

Momentum mismatch with F/B ensembles, pos/neg p boost
Exponents N1 vs. N2
Relation force-pressure @uy=0, ext vs. internal Expansion-cooling

(Fu)=—T4A,m|[dp® f (B)-|o,1- Uy ==y, with y>0




Physical Changes: Compression of (Ideal) Gases

Compression of a gas "System” volume
V with a constant force F (e.g., weight)
on a constant area A:

- Pressure p = Force F/Area A,

at p = p.,; =const.(external, not internal)
F
p=—=p.,., > AV=A-Ah <0
/Q\ ext
T <0
Compression work done on system

et e f

w=-F-Ah=—(p-A)-Ah=—p-AV >0

<0

Internal energy gain of gas: AU =-p-AV >0 — AT >0

<0

Sign Convention work: Compressional work on a gas volume (=system)
increases the internal energy E of the gas .

- Work done on gas is counted as positive w > 0().



Planck’s Thermal (Blackbody) Radiation

Experimental electromagnetic energy
spectrum emitted by a mass ("black”
body) @ T. Radiation (photon) energy

- Electromagnetic Energy Quantum

E,=h-v=h-.c/4

vlic

Model of black-body cavity
walls: harmonic oscillators

Planck's constant, from fit light vel.c=A4-v

h=6.62618-103%J.s

Blackbody Spectrum

Power (energy/time) density@universal shape
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Conversion of Heat to Macroscopic Potential Energy

Heating a metal bar transfers energy to solid crystal lattice > bar expands
in 3D. Reason: shape of the interaction potential between atoms/ions
(Lennard-Jones-type or harmonic oscillator potential).

Macroscopic application: Avoid expansion effects by gaps between segments of
bridges, highway concrete surface plates exposed to solar radiation Lennard-Jones Potential

grmmm——. Effect of particle interaction ~

i—w potential V(distance=r). Increased --8-f---—--—mmmmmm—oo
W - internal lattice energy weakens

' attractive forces = Increased atomic ~

distance = macroscopic expansion.
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(L)) =(L(T))| 1+ a(T -Ty) | > (L(Ty))
Linear expansion coefficient a > 0
Can be anisotropic in 3D (lattice structure)

Equivalence of heat and mechanical etc. work ? >



Mechanical Equivalent of Heat

"An Experimental Enquiry Concerning the Source of the Heat which is
Excited by Friction", (1798), Phil. Transactions of the Royal Society p. 102

Joule's experiment

©

Ja f—'@s.Pre tt Joule
1 9

Mechanical work equivalent
of heat energy

WoeQ->w=C-Q
C= 4.186 kJ/kcal

Specific heat C -
Energy (AT): q=C-AT

Heat energy q required for heating of H,0O: C\(...) = (4.17- 4.22) J/(g-°C)

1g material by AT=10C i



Equivalence of Work and Heat Energy

Conservation of total Energy (First Law of Thermodynamics): Energy U of an
isolated system is conserved. > U is a state function (characterizes state)

If system can exchange energy with
9 b corbed by system environment, it can do that by
\ 1) doing or receiving work w or by
2) absorbing or emitting heat q.

AU =w + ¢q

2> W and q are path dependent, and
NOT state functions.

Both are counted positive, if they increase U

Example: Internal energy loss suffered AU<O0
= sum of work done by (w < 0) and heat
emitted by (g < 0) by the system.

In asymptotic (long times) state, most likely, system equilibrium state, U
fluctuates in time and distributes randomly over all degrees of freedom.
- No historic memory about production pathway.

Stationary state of m.p. system, interactions w. environment? )




Energy Transfer between m.p. Systems & Surroundings

Energy transferred to and from N-particle systems (e.g., a gas or liquid
volume) by mechanical, radiation, or other work is dissipated by multiple
interactions of system constituents (particles in a gas or solid lattice).

Energy dissipation process may take some “relaxation time,” after which all
N system particles move randomly (populate all states) & share total energy
on average equally over all degrees of freedom (Equipartition Law):

<8k,.n + 8pot>N c T

Apparently stationary macroscopic state = "Thermal Equilibrium” is a

dynamic process, with multi-particle configurations fluctuating over entire
range with equal probabilities 2 historic memory is lost (Markov Process).

(Total) Energy U(N) is an extensive state variable (“state function”),
characteristic of the (macroscopic) state of the system, scales with size.

(U)=N-(g) o T |(factor = heat capacity A(U)=C, -AT




Idealized Classification: Random Statistical Ensembles

E (or U): total energy, V : containment volume, N >>1 (~102?) constituents
Ensemble: many (>>1) identically prepared N-particle systems

Heat Bath

Micro-canonical ensemble
|solated systems: Total energy E, linear and angular
momentum well defined and conserved. Particle
number N and system volume V well defined and
conserved. Macro-& microstates: E, N,V constant

Canonical ensemble
Closed systems: Particle number N and system volume
V well defined and conserved.
Exchange of energy (lin & angular momentum) occurs
with surrounding “Heat Bath”-> fluctuate
Stationary macro-&micro states:T,N,V constant

- (System plus reservoirs) = isolated system



Idealized Classification: Random Statistical Ensembles

E (or U): total energy, V : containment volume, N >>1 (~102?) constituents
Ensemble: many (>>1) identically prepared N-particle systems

Grand-canonical ensemble
Open systems: Exchange of energy and particles occur
with surrounding particle reservoirs and "Heat Bath.”
Stationary macro-& micro states: T, u constant.
L . chemical potential energy per patrticle.
- (System plus reservoirs) = isolated system

Heterogenous system phases (solid, liquid, gas) are homogenous
subparts, separating surfaces are phase boundaries.

Extensive (additive) state variables scale in proportion to system size (mass,
number of particles). Examples: volume, total energy, entropy.
Intensive state variables do not scale with the size of the system.
Examples: pressure, temperature, refractive index




Basic Laws of Statistical Thermodynamics

Statistical Thermodynamics: Physics of equilibration & equilibrium

0)

Systems in contact equalize mean internal (kinetic ++) energies,
- "temperatures” equalize. Equipartition of thermal energy

"Canonical & grand canonical” ensembles (of many identical systems).

1)

2) Complex m.p. systems evolve spontaneously toward state of maximum|

3) There exists an absolute "zero point” of energy for any system:

Energy (of system plus surroundings) is conserved.

randomness (complexity)> Measure = Entropy AS=S, —-S,_ >0

fin

energy and complexity are at a minimum (@ absolute T=0 K).

0. LTD and consequences

=)



Energy Equilibration By Heat Exchange

Composite System  constant energy E = E;+E, - initially in exc. hot Q,(E, = E)

CS=Sys, Sys; > Most likely final energy partition E,/E,?
heat fl Spontaneous exchange Aq, =-AE,=+AE, to increase
€ag riow average excited population probability P-s of states in CS

(Callns)

maximize Q = #
AP.(E,E,) < AQ |= A[Q,(E,)Q,(E,)] populated states
:[Aﬁl(El)]'Qz(Ez) + Ql(El)'[Agz(Ez)]

AP AQ. (E AQ.(E.)| CS Exc. probability change
Cs oc 1( 1) Qz(Ez)_Ql(El) 2( 2) - p y g
AE, AE, AE, with AE, =-AE, <0

Thermal Contact
&
PCS (El)

dPs/dE, =0  Maximize P
- dP., ~0 s 1 dQ1(E1);' 1 dQ,(E,)| |dimension
dE, Q dE,  Q, dE, || l=1/Energy

\ ) \ J
|

Y
Depends only Depends only
on Sysl on Sys2




Energy Equilibration By Heat Exchange

ng_PSOSiteSSYSt;m Constant energy E=FE,+E,+E; - Search for the most likely
=9YS1 9Y529Y53 finq) energy partition E;/E,/E5. For each spontaneous
exchange of heat —Aq;=AE,+AE; - increase excited P

Spontaneous energy transfer maximizes
excited Ps ~ Qs =Q,-Q, - Q, dPes
Check 2™ derivatives (Saddles) dE,dE,

l ﬁ 1 dQl(El): 1 dQZ(EZ): 1 dQ3(E3):_“
Thermal Coptacts Q, dE Q, dE, Q, dE,

E  E
CS( 1 2) 7 |:> Universal function dimension | |=1/Energy
dP../dE,dE, =0

Independent of index = independent of material
properties 1,2,...; 2 common mean energy/particle (T)

But common temperature T depends on total energy E
in all systems/total mass > <E> —E/N ~T
N




Energy Equilibration By Heat Exchange

CSQPSOSiteSSYStSem Constant energy E=FE,+E,+E; - Search for the most likely
=9Y51 9Y529Y33 finq) energy partition E;/E,/E5. For each spontaneous
exchange of heat —Aq;=AE,+AE; - increase exc. P.s

Equilibrium partition {E,, ..., E,} maximizes excited Qg

1 dQ (E) : dimension | ]
1-1- =const. function (E=) E
Q. dE, ( Z | - yneray
Ther C@cts Plausible Ansatz:
es (Evr ) "d—E\Ln QYCS(E)}_const.«E))ocﬁ [> dS(E)/kocﬁ

dPQS [ dLj_ldEl =0 Def.=S/k -> Entropy =deg. disorganization

dE =T -dS ds = dq _ Spont. Heat Transfer
T Temperature

Spontaneous energy redistribution requires
entropy increase AS>0 (opposite is not true!)




Simulation: Energy Equilibration

= Observation: t-dependent equilibration of temperatures
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s ¥ Discrete energy states of 2
;ﬁE:TZ similar interacting systems
‘a1 En System1 System2 Average

il S | Initial conditions

S Initial mean energies

Random + energy and
+ momentum exchange

Sysl| Sys2

Final mean energies
thermalization achieved

0 --T rmemem Equil. energy fluctuations
| 2 2
i g = kgT<C,

Thermal
Contact



Entropy and Energy at Equilibrium

Independent of material, Size, shape, amount > Intensive function

Const(E,N) iLnQ(E N)—dS(E’N)
dE o

= Const(E)

depends on total energy E supplied to one of the sub-systems as heat and
the total number of particles. Dimension [Const(E)]= 1/energy.

Obvious intensive energy variables: Energy per particle ~ temperature T
E PV

- System energy content of an ideal gas (N particles): <E>N =N oc ~ - =Kkg T

ds 1do(E) d 1| Simplest form
Adopt intensive function S with JE 0 dE dE ks - LnQ(E) o +| compatible
S extensive

Set integration constant =0

S(E)=k,Ln Q= X-I———) Distributed heat energy| E=T - S

Heat absorption / emissionby system@T : A(E)=Aq — AS = %

:’> AS =S —Sp =Ke -Ln(Qp /)




Example: Entropy Gain in Gas Mixing

In: Separated Gases g _ gain by individual gas components —|Q. V. volume

Entropy is extensive (additive). - conponents add

S =n,-R-Ln(V;)>0| n, =number of moles i
Total #moles n=n = Zn, ; total vol V = ZV

Initial S, =R-> n.-Ln(V,) > S, _R. Y. n-Ln(V)

5=—R-Zini-Ln(viJ>O g
total moles n—Zn SAS=-n-R- Z( j Ln(\\ij

Fin: Mixed Gases

V=Vt VoV, Relative abundance (probability for) particle type |
pi:&:\é<l AS=-n-R-> p -Lnp, |n moles
n

N particles|AS =-N-k; - > p,-Lnp,

Can use other "State Functions" to calculate entropy, all related by EoS



Entropy of Mixing: Example

One mole each of two equivalent ideal gases, A=0, and B=H,, in their respective
halves of a separated container at P, = Pg= 1atm, T, = Ty = 298K

|:> S.p. spaces

|:> When partition is removed, the gases will mix. Aq=0

Universal Gas Constant
R=8.31J/mol-K

@, <V, and @, <V, No change in energy

Information on s.p. configuration space from EoS
Idealgases P-V =n-R-T > @,50xV,,0cn,,

Total n = 2 moles ; Mole fractions: n,/n= ng/n = 0.5.
-> probabilities are p, = pg; = 0.5 also in state space

- “Entropy of Mixing”

AS.. =-nR {”—A Ln (”—Aj e (”—Bj} -
n n n n

=-2R{0.5-Ln(0.5)+0.5-Ln(0.5)} =11.5J/mol -K >0

Entropy is gained €=» mixing occurs spontaneously.

AQ .
|:> AS > Tq in spontaneous processes

Mixed gases are difficult to unmix (costs energy)!
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