
Agenda: Kinetics and Transport in Multiparticle Systems

Dynamics of interacting multi-particle systems 

• Interaction energies
Dissipation via multiple scattering

• Probabilistic evolution 
Random walk and binomial distribution
Diffusion processes

 Maxwell-Boltzmann energy distributions
 Fluctuating (Langevin) dissipative forces
 

• Kinetics of dilute gases
Work and heat transfer 

 Flow of heat and radiation
 Laws of thermodynamics, thermodynamic ensembles, entropy
• Fundamental ideal gas laws, Equation of state (EoS)

Reading 

Assignments

Weeks 5 & 6

LN IV.1-4: 

Kondepudi Ch. 1-3. 

Additional Material

McQuarrie & Simon 

Ch. 2, 5

Math Chapter B, C 

             



Macroscopic Effects of Dissipative Energy Transfer

Discussion Points

Collision layer, Effects of multiple collisions with Mm
Trends to push M → pV-work= conversion of random energy to 
directed flow/motion

Momentum mismatch with F/B ensembles, pos/neg p boost 

Exponents ^1 vs. ^2

Relation force-pressure @uM=0, ext vs. internal Expansion-cooling
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Physical Changes: Compression of (Ideal) Gases

Compression of a gas “System” volume 
V with a constant force F (e.g., weight) 
on a constant area A: 

→ Pressure p = Force F/Area A, 

at p = pext =const.(external, not internal)
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Sign Convention work: Compressional work on a gas volume (=system) 
increases the internal energy E of the gas . 

→ Work done on gas is counted as positive w > 0().
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Planck’s Thermal (Blackbody) Radiation

→ Electromagnetic Energy Quantum

Experimental electromagnetic energy 
spectrum emitted by a mass (“black” 
body) @ T. Radiation (photon) energy 
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Conversion of Heat to Macroscopic Potential Energy

Heating a metal bar transfers energy to solid crystal lattice → bar expands 

in 3D. Reason: shape of the interaction potential between atoms/ions 
 (Lennard-Jones-type or harmonic oscillator potential).

Macroscopic application: Avoid expansion effects by gaps between segments of 

bridges, highway concrete surface plates exposed to solar radiation

Effect of particle interaction 
potential V(distance=r). Increased 
internal lattice energy weakens 
attractive forces → Increased atomic 

distance = macroscopic expansion.

Equivalence of heat and mechanical etc. work ?

L

L

 Linear expansion coefficient 0

Can be anisotropic in 3D(lattice structure)
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Mechanical Equivalent of Heat

"An Experimental Enquiry Concerning the Source of the Heat which is 

Excited by Friction", (1798), Phil. Transactions of the Royal Society p. 102

Specific heat C → 

Energy (T):  q = C·T  

James Prescott Joule

1818-1889

Joule's experiment

Calorimeter

Weight

Ruler

Thermo-

meter

Paddle wheel

Crank

Heat energy q required for heating 
1g material by T=10C

of H2O: CV(…) ≈ (4.17- 4.22) J/(g·°C)

Mechanical work equivalent 
of heat energy 
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In asymptotic (long times) state, most likely, system equilibrium state, U 
fluctuates in time and distributes randomly over all degrees of freedom. 
→ No historic memory about production pathway. 

Equivalence of Work and Heat Energy

If system can exchange energy with 
environment, it can do that by 

1) doing or receiving work w or by 
2) absorbing or emitting heat q. 

  U = w + q 

→ W and q are path dependent, and 

 NOT state functions.

Both are counted positive, if they increase U 

Example: Internal energy loss suffered U<0 
= sum of work done by (w < 0) and heat 
emitted by (q < 0) by the system.

Conservation of total Energy (First Law of Thermodynamics): Energy U of an 
isolated system is conserved. →  U is a state function (characterizes state)

U

absorbed by system

done on system

q

w

Path 1

Path 2

Stationary state of m.p. system, interactions w. environment?



• Energy transferred to and from N-particle systems (e.g., a gas or liquid 
volume) by mechanical, radiation, or other work is dissipated by multiple 
interactions of system constituents (particles in a gas or solid lattice).

• Energy dissipation process may take some “relaxation time,” after which all 
N system particles move randomly (populate all states) & share total energy 
on average equally over all degrees of freedom (Equipartition Law): 

• Apparently stationary macroscopic state = “Thermal Equilibrium” is a

 dynamic process, with multi-particle configurations fluctuating over entire 
range with equal probabilities → historic memory is lost (Markov Process).

• (Total) Energy U(N) is an extensive state variable (“state function”), 
characteristic of the (macroscopic) state of the system, scales with size. 

Energy Transfer between m.p. Systems & Surroundings
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Idealized Classification: Random Statistical Ensembles

E (or U): total energy, V : containment volume, N ~1020) constituents

Ensemble: many ( 1) identically prepared N-particle systems 

E,  N,

V

Micro-canonical ensemble 
Isolated systems: Total energy E, linear and angular 

momentum well defined and conserved. Particle 

number N and system volume V  well defined and 

conserved. Macro-& microstates: E, N,V constant

    Canonical ensemble 
Closed systems: Particle number N and system volume 

V well defined and conserved. 

Exchange of energy (lin & angular momentum) occurs 

with surrounding “Heat Bath”→ fluctuate 
Stationary macro-&micro states:T,N,V constant 

→ (System plus reservoirs) = isolated system 

Heat Bath

T,  

N1,

V1



Idealized Classification: Random Statistical Ensembles

Grand-canonical ensemble 
Open systems: Exchange of energy and particles occur 

with surrounding particle reservoirs and ”Heat Bath.”

Stationary macro-& micro states: T,  constant.

                       : chemical potential energy per particle.

→ (System plus reservoirs) = isolated system 

Heterogenous system phases (solid, liquid, gas) are homogenous 
subparts, separating surfaces are phase boundaries.

Extensive (additive) state variables scale in proportion to system size (mass, 

number of particles).  Examples: volume, total energy, entropy.

Intensive state variables do not scale with the size of the system. 

Examples: pressure, temperature, refractive index

E (or U): total energy, V : containment volume, N ~1020) constituents

Ensemble: many ( 1) identically prepared N-particle systems 

T,   
V1



Basic Laws of Statistical Thermodynamics 

Statistical Thermodynamics: Physics of equilibration & equilibrium

0) Systems in contact equalize mean internal (kinetic ++) energies,

 → “temperatures” equalize. Equipartition of thermal energy

 “Canonical & grand canonical” ensembles (of many identical systems).

 

1) Energy (of system plus surroundings) is conserved.

 

2)  Complex m.p. systems evolve spontaneously toward state of maximum 
randomness (complexity)→ Measure = Entropy 

 

3) There exists an absolute “zero point” of energy for any system: 
 energy and complexity are at a minimum (@ absolute T=0 K).

0. LTD and consequences

fin inS S S 0 = − 



Energy Equilibration By Heat Exchange

Thermal Contact 

Composite System
 CS=Sys1 Sys2

heat flow
(Collns)

E1    E2

Constant energy E = E1+E2 → initially in exc. hot
 → Most likely final energy partition E1/E2? 
Spontaneous exchange q1 =-E1=+E2  to increase 
average excited population probability PCS of states in CS 
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Energy Equilibration By Heat Exchange

Thermal Contacts 

Composite System
 CS=Sys1 Sys2 Sys3

Constant energy E=E1+E2+E3 → Search for the most likely 

final energy partition E1/E2/E3. For each spontaneous 

exchange of heat –q1=E2+E3 → increase excited PCS 
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Independent of index → independent of material 
properties 1,2,…; → common mean energy/particle (T)

But common temperature T depends on total energy E 
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heat flow
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Energy Equilibration By Heat Exchange

Thermal Contacts 

Composite System
 CS=Sys1 Sys2 Sys3

Constant energy E=E1+E2+E3 → Search for the most likely 

final energy partition E1/E2/E3. For each spontaneous 

exchange of heat –q1=E2+E3 → increase exc. PCS 
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Simulation: Energy Equilibration

Observation: t-dependent equilibration of temperatures

Discrete energy states of 2 

similar interacting systems

        Initial conditions

<E1> ≈ E        <E2> ≈ 0

Initial mean energies

    e1 = E1 /A1 > e2 = E2 /A2

Random ± energy and 

± momentum exchange 

       Final mean energies 

thermalization achieved 

          ei → Ei /Ai ~Ti=T

Equil. energy fluctuations 
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Entropy and Energy at Equilibrium
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Obvious intensive energy variables: Energy per particle ~ temperature T 
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Example: Entropy Gain in Gas Mixing

V = V1+ V2+ V3

In: Separated Gases

Fin: Mixed Gases
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Entropy of Mixing: Example

Total  n = 2 moles ;  Mole fractions:  nA/n = nB /n = 0.5. 
→ probabilities are pA = pB = 0.5 also in state space

→ “Entropy of Mixing” 

One mole each of two equivalent ideal gases, A=O2 and B=H2, in their respective 

halves of a separated container at PA = PB= 1atm, TA = TB = 298K 

 s.p. spaces     

               When partition is removed, the gases will mix.   

Entropy is gained ➔ mixing occurs spontaneously.

Mixed gases are difficult to unmix (costs energy)!

VA,T    VB,T

VA+ VB,T
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A A B B

V V  

Information on s.p. configuration space from EoS 
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No change in energy

 q = 0

Universal Gas Constant 

R=8.31J/mol·K
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Agenda: Kinetics and Transport in Multiparticle Systems

Dynamics of interacting multi-particle systems 

• Interaction energies
Dissipation via multiple scattering

• Probabilistic evolution 
Random walk and binomial distribution
Diffusion processes

 Maxwell-Boltzmann energy distributions
 Fluctuating (Langevin) dissipative forces
 

• Kinetics of dilute gases
Work and heat transfer 

 Flow of heat and radiation
 Laws of thermodynamics, thermodynamic ensembles, entropy
• Fundamental ideal gas laws, Equation of state (EoS)

Reading 

Assignments

Weeks 5 & 6

LN IV.1-4: 

Kondepudi Ch. 1-3. 

Additional Material

McQuarrie & Simon 

Ch. 2, 5

Math Chapter B, C 

             


	Slide 1: Agenda: Kinetics and Transport in Multiparticle Systems
	Slide 2: Macroscopic Effects of Dissipative Energy Transfer
	Slide 3: Physical Changes: Compression of (Ideal) Gases
	Slide 5: Planck’s Thermal (Blackbody) Radiation
	Slide 6: Conversion of Heat to Macroscopic Potential Energy
	Slide 7: Mechanical Equivalent of Heat
	Slide 8: Equivalence of Work and Heat Energy
	Slide 9: Energy Transfer between m.p. Systems & Surroundings
	Slide 10: Idealized Classification: Random Statistical Ensembles
	Slide 11: Idealized Classification: Random Statistical Ensembles
	Slide 12: Basic Laws of Statistical Thermodynamics 
	Slide 13: Energy Equilibration By Heat Exchange
	Slide 14: Energy Equilibration By Heat Exchange
	Slide 15: Energy Equilibration By Heat Exchange
	Slide 16: Simulation: Energy Equilibration
	Slide 17: Entropy and Energy at Equilibrium
	Slide 18: Example: Entropy Gain in Gas Mixing
	Slide 19: Entropy of Mixing: Example
	Slide 20: Agenda: Kinetics and Transport in Multiparticle Systems

