
U N I V E R S I T Y   O F

ROCHESTER

DEPARTMENT OF CHEMISTRY

CHM 252              W. Udo Schröder

 

 

IV-32 

IV.2.2. Fluctuating Dissipative Forces 

 

The above random-walk model is not purely academic, or for il-

lustrative purposes and simplicity only. There are actually many 

processes in nature that have random-walk-like features. The fold-

ing of large organic molecules (proteins) is an example of a problem 

in modern chemistry that is addressed in terms of (self-avoiding) 

random-walk processes. Brownian Motion is a good physical ex-

ample for a random-walk process in three dimensions. This term de-

scribes the erratic motion of a relatively heavy particle moving in a 

thermally agitated medium, like pollen particles in warm air. In the 

following, some of the important characteristics of Brownian mo-

tion, which are entirely due to molecular interactions, will be dis-

cussed.  

 

Collisions of the gas molecules with the Brownian particle can be 

modeled with a randomly fluctuating "Langevin force" F(t), which 

has a chaotic time dependence. For simplicity, only one degree of 

freedom (x) will be considered here for the Brownian particle of 

mass M. Then, the equation of motion of the Brownian particle for 

this degree of freedom can be expressed as (see Equ. II.33) 

 

       ( )Mx F t=          (IV.52) 

 

Like all quantities related to the chaotic motion of microscopic gas 

particles in thermal motion, the stochastic force due to molecular 

interactions has a probability distribution defining an average 

smooth force and its fluctuating part, the latter including possible 

higher moments. Therefore, it is reasonable to decompose the ran-

dom force into at least these two components, such that the equation 

of motion for the Brownian particle reads 
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( ) ( )Mx F t L t= +       (IV.52a) 

 

It is the fluctuating part L(t) that is commonly called Langevin 

force. Since the average has been separated out, the Langevin force 

has no average, i.e., 

 

             ( ) 0L t =        (IV.52b) 

 

Therefore, the equation of motion for the average position and ve-

locity is simply 

          ( )M x F t=        (IV.52c) 

 

Because of this feature, the fluctuating part does not lead to a sig-

nificant deviation of the Brownian particle from its average trajec-

tory. This force just induces fluctuations around the average path. 

Before discussing further the effects of the Langevin force L(t), the 

average force ( )F t component will be considered. It turns out that 

there is a significant average molecular effect on the Brownian par-

ticle. This effect leads to dissipation, friction and viscosity that the 

particle experiences on its path through the medium. 

 

Consider a disc, or piston, representing schematically a massive 

Brownian body moving with velocity u
through a gas at temperature T. The velocity of 

the body should be small in comparison with 

typical velocities of the gas particles. Other-

wise, more complicated effects like compres-

sion of the gas, leading to sound waves, and 

wake turbulence have to be taken into account. 

The disc receives a recoil momentum in each 

collision with a gas molecule. Obviously, the disc collides with more 

particles on its front face than on its back. Since the collision rate is 

u 

Figure IV-9: 

Origin of friction 
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proportional to the relative velocity of disc and gas particles (see 

Sect. III.4), the forward velocity u = ux of the Brownian disc causes 

a boost to this rate. A fast-moving disc has little chance to be hit 

from the back. Therefore, the combined effect of all collisions re-

sults in a net frictional drag, at least in this approximation. As will 

be shown next, this basic asymmetry is responsible for the genera-

tion of dissipative forces.  

 

As illustrated in the figure, particles with 

velocities vx hit the disc of area A  from front 

and back, and impart each a momentum, ap-

proximately equal to -2px or +2px on it, re-

spectively. Differences in momentum trans-

fers will give rise to higher-order effects, 

which are neglected in the present first-order 

approximation. The gas particles of mass m 

have a uniform, isotropic Boltzmann-type probability distribution 

( , ) ( ) ( )f r p r f p= . This is a joint distribution for position and mo-

mentum, given by a product of particle density  and momentum 

distribution f. It is assumed that this joint probability distribution is 

not disturbed by the motion of the disc. This implies slow motion of 

the disc in comparison to the gas particles.  

 

Under these idealistic conditions, one calculates for the number 

of particles colliding with the disc on its back within time interval 

t, 

 
3 ( , )B xdN d p f r p v u Adt=  −         (IV.53a) 

 

Similarly, one has for the number of particles colliding with the front 

side of the disc,  

 
3 ( , )F xdN d p f r p v u Adt= −  +         (IV.53b) 

Figure IV-10 
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For a Boltzmann distribution, ( , ) ( , )f r p f r p− = + . Then, the net 

force on the disc due to collisions from either side is given by 

 

                      3

3

2 2

2 ( , )

[4 ( , ) ]

x B F
x x x

x x x

x

p dN dN
F p p

t t t

A dp f r p m v v u v u dt

Am dp f r p v u u


= = − =

  

=   −  −  +    

= −   = −

 





 

 

This average of the fluctuating force, 

 

               4x x xF u with A m v  =− =        (IV.55) 

 

is a frictional force. It is proportional to the velocity of the Brown-

ian body (higher-orders do not appear in the present first-order ap-

proximation). Its direction is opposite to the velocity of the disc. 

Hence, the force tends to slow the motion of the disc down. The 

constant  is the frictional coefficient with the dimension of mo-

mentum/length. Hence, the force has the proper dimension of en-

ergy/length. The main dependence of the magnitude of the friction 

coefficient is via the momentum transfer 2 xq m v =  from the 

gas particles to the Brownian particle and the "area of attack" A ex-

posed to collisions. This dependence is the reason why deformable 

particles assume a streamlined shape when passing through a vis-

cous medium. 

 

The above considerations provide a simple solution for the equa-

tion of motion (cf. Equ. IV. 52c) of the average position
xx u= , 

         ( ) ( 0)
t

Mx t x t e


− 

= =        (IV.55a) 

 

(IV.54) 
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This frictional process leads, hence, to an exponential decay of the 

average velocity of the Brownian particle to zero! The typical relax-

ation time for the average velocity of linear motion is  

 

,u relax

M
t


        (IV.55b) 

 

The velocity 
xx u=  decreases rapidly, if 

the frictional coefficient  is very large, and 

it decreases very slowly for a heavy Brown-

ian particle. Once the average velocity of the 

Brownian particles is close to zero, the 

Brownian particle exhibits a random trajec-

tory with no preferred direction, like the gas 

particles. This is a necessary  result of the 

random collisions with the gas particles. The 

Brownian particle then has a velocity distri-

bution that is very different from the initial distribution, which had 

just one value u(0) an no velocity fluctuations, as shown in the fig-

ure. The dissipation process is associated with increasing fluctua-

tions (Fluctuation-Dissipation Theorem). 

 

The above derivation can easily be generalized, leading to the 

friction force 

 

                4 xF u with A m v  =− =      (IV.56a) 

 

Inserting the average speed of the gas particles, as calculated in Equ. 

III.115c, one predicts a frictional coefficient of 

 

                         4 32x BA m v A mk T  = =      (IV.56b) 

 

Figure IV-11 
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Of interest for applications is also that the friction strength depends 

on the geometrical cross section area A ("area of attack") of the 

Brownian particle mentioned previously.  

 

In summary, the random, thermal motion of the gas particles has 

on average a slowing-down effect on the motion of a heavy and 

slow Brownian particle. The kinetic energy lost by the Brownian 

body is mostly transferred to the gas particles and leads to a temper-

ature increase (heating) of the gas. This effect can be described rea-

sonably well by the action of a velocity-proportional frictional 

force. The strength of the friction force, represented by the friction 

coefficient , increases with the particle density, the mass and the 

speed of the particles of the gaseous medium, which in turn depends 

on the temperature of the medium. It is somewhat counterintuitive 

that a higher temperature leads to higher frictional drag exerted by 

combined effect of the particles in a gas. Dissipation leads also to 

increased fluctuations, which will be dealt with further below. 

 

Friction of the type discussed above is naturally also experienced 

by the particles of a gas (or a liquid) themselves, when there is an 

overall mismatch of velocities. This occurs, for example, when there 

are layers of particles streaming past each other with different over-

all velocities, i.e., when a velocity gradient du/dx exists.  
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Consider two equal plates moving parallel 

to each other with velocities u1 and u2 in y di-

rection. The plates are separated by a layer of 

liquid or gas of thickness x, wetting an area 

of A on the inside of both plates. The fluid or 

gas films directly at the plate surfaces have ve-

locities very nearly equal to the respective 

plate velocities, a behavior enforced by fric-

tion. Because of the difference u=u1 - u2 in 

plate velocities, a velocity gradient will even-

tually be established in the fluid or gas layer 

between the plates, as indicated in the figure. 

In moving the plates, adjacent gas/liquid layers 

move against each other and experience friction (viscosity). As a 

consequence, moving the plates parallel to each other with a con-

stant relative velocity requires a force and costs energy, which is 

dissipated within the gas/liquid layer between the plates. This dissi-

pative process is termed viscosity. It can be described by the viscous 

friction force 

 

       y

u
F A

x



=− 


         (IV.57) 

 

That is, the frictional force between the plates retards the motion 

in y direction. It is proportional to the velocity gradient u/x per-

pendicular to the plates and proportional to the wetted area A. The 

proportionality factor is called viscosity coefficient . This coeffi-

cient is measured in units of Poise (1 p = 1g/cm s). Some typical 

values for liquids and gases are quoted in the table. Note the differ-

ent orders of magnitude and the different behavior with increasing 

temperature. 

 

u1

u2

Figure IV-12: 

Viscosity in 

liquids 
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                Table IV-2: Viscosity Coefficients 

 Liquids /mp 
(0oC) 

/mp 
(20 oC) 

/mp 

(30 oC) 
/mp 
(50 oC) 

Water 17.921 10.050 8.007 5.494 

Acetone 4.013 3.311  2.561 

Glycerol 42200  

(2.8 oC) 

10690   

 Gases /p  
(200K) 

/p 
(300K) 

/p 

(1000K) 
 

Nitrogen 129.5 178.6 401.1   

Oxygen 147.6 207.1 472.0   

Argon 159.4 227.0 530.2  

 

Having evaluated the average behavior of fluctuating forces, the 

discussion returns now to the fluctuating Langevin term. The equa-

tion of motion (Equ. IV-52) for the fluctuating force can now more 

specifically be expressed as 

 

( )Mx x L t= −  +          (IV.58) 

 

with a Langevin force that has zero average, ( ) 0L t = , calculated 

with respect to all interactions with gas particles. Although the av-

erage fluctuating force is zero, its higher order moments have ef-

fects. They lead notably to a dispersion of the trajectories about the 

average path. The general treatment of the fluctuating part of the 

force can be rather involved. However, the important effects can al-

ready be gleaned from the consideration of a schematic model force.  
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This model of a Langevin force is constructed from a random 

succession of short "kicks" of the Brownian particle from all sides. 

Such a force can be approximated by a superposition of delta-func-

tion-like pulses, such as illustrated in the 

figure. Such a pulse can be constructed 

in a number of ways. A simple method 

illustrated in the code 

(MATHCAD_252\Rand_Force.mcd) 

constructs a rectangular pulse by sub-

tracting two Heaviside step functions, 
( )t , shifted with respect to one another 

by the bin width t:   

 

1
( ) ( ) ( )

2 2

t t
t t t

t


  
=  + −  −   

        (IV.59) 

 

This function describes a unipolar pulse of unit height and a width 

of t, which is centered at time t. It is an obvious property of this 

function that, when folded with a function f(t), it projects out the 

value of this function at the position of the delta function: 

 

                                0 0( ) ( ) ( )f t d f t   =  −        (IV.60) 

 

 Using this approximation of the delta function, a series of brief 

kicks can be simulated by a sum of N identical force pulses, except 

that positive and negative directions occur with equal statistical 

weights, such that there is not net effect by the train of pulses. This 

superposition 
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Figure IV-13:                  

Delta function 

file:///F:/GSDB/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/Special_Functions.doc%23Delta
file:///F:/GSDB/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/Special_Functions.doc%23Delta
file:///F:/GSDB/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Rand_Force.mcd
file:///F:/GSDB/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/Special_Functions.doc%23Heaviside


U N I V E R S I T Y   O F

ROCHESTER

DEPARTMENT OF CHEMISTRY

CHM 252              W. Udo Schröder

 

 

IV-41 

0

( ) ( 1)

( (1000) )

N
n

n

L t

t rnd t





=

= − 

 −  


                        

(IV.61) 

 

is, therefore, an appropriate 

representation of a Langevin 

force. The Langevin force of 

Equ. IV.61 has the general 

form of 

0

( ) ( 1) ( )
N

n n

n

L t t t 
=

=   −    

                                    (IV.62) 

 

In Equ. IV.61, the positions for the large, ideally infinite number (

N →  ) of total pulses are distributed by a random-number gener-

ator (rnd(…)) in a very large time interval 0 1000it t    . The fac-

tor   is the common amplitude of all force kicks. The direction of 

each force kick is decided by the sign factor (-1)n . Both directions 

appear with equal probabilities. In the expression of Equ. IV.62, the 

sign factor ( )1
n

  is a random sign factor, changing randomly from 

+1 to -1 for the different times ti .  

 

The average of the fluctuating force L(t) is defined as an average 

over an arbitrary time interval 2 2T t T−   +  . For example, one 

calculates for he average of the force of Equ. IV.62: 

 

                 
0 0

2

2
0 0

( ) ( 1) ( ) ( 1) ( )

1
( 1) ( ) ( 1) 0

N N

n n n n

n n

N NT

n n n
T

n n

L t t t t t

dt t t
T T

   


 

= =

+

−
= =

=   − =   −

=  − =  

 

 

 

(IV.63) 

Figure IV-14: Random force 
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The integral in this equation, divided by the length of the integra-

tion interval defines the time average in an intuitive way. The aver-

aging interval should be chosen long enough to cover many individ-

ual pulses represented by the delta functions at the different times ti. 

Each of the integral is then equal to 1/T. Obviously, the forces of 

Equs. IV.61 and 62 have no net average over time, as is required by 

construction (see Equ. IV.52b). This is insured by the alternating 

signs of the individual random force pulses.  

 

In addition, because of the random distribution in time of the 

force pulses, there is no memory of the past contained in these kicks. 

This latter behavior is typically expressed in terms of the time-cor-

relation function C, 

 

            ( ) ( ) ( )C L t L t =  +         (IV.62)  

 

which is defined as the time average of the product of the fluctuating 

force L(t) with itself but shifted by some time . Only for  =  can 

one expect a non-zero average. In the latter case, one gets again a 

single delta-function-like pulse, such that the fluctuating force ful-

fills the requirements 

 

            ( ) 0 ( ) ( ) 2 ( )L t and L t L t K  =  + =     (IV.63) 

 

Here, K is the amplitude of the average pulse, divided by the time 

interval T.  

The solution of the equation of motion (see Equ. IV.58) can now 

be given: 

 

    
( )

0

1
( ) ( ) ( ) ( )

t tt
M Mu t x t x t e d e L

M

 


 
−  −  −

= =  +           (IV.64) 
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One proves by differentiation, that this function does in fact fulfill 

the equation of motion for the Brownian particle. In Equ. IV.64, the 

first term disappears fairly rapidly, as time passes, while the second 

term does not. As discussed previously (cf. Equ. 55a), the former 

term represents the frictional slowing-down process, the loss of the 

average velocity. One may neglect this term, except for times of the 

order of the slowing-down time (tu,relax).  

 

The above expression for the velocity xu u= actually defines a ve-

locity distribution at each time t, since L(t) represents such a dis-

tribution. This distribution has a zero average, but not necessarily 

zero higher moments. For larger times, one can neglect the first term 

in Equ. IV.64 and calculate the mean-square velocity: 

 

       
( ) ( ')

2

2 0 0

1
( ) ( ) ' ( ')

t tt t
M Mu t d e L d e L

M

 
 

   
−  − −  −

=        (IV.65) 

 

The integrals over  and ' represent the functional dependence of 

the velocity as defined by the equation of motion for any force and 

does, by itself, not lead to any fluctuations in u. The only fluctuating 

entities in Equ. IV.65 are the terms L() and L('). Hence, the inte-

grals are not affected by the averaging process and can be taken out 

of the angle brackets, 

 

(2 ')
2

2 0

(2 ')

2 0

1
( ) ' ( ) ( ')

2
' ( ')

tt
M

tt
M

u t d d e L L
M

K
d d e

M


 


 

   

    

−  − −

−  − −

= 

= −





 IV.66) 

 

The integration over ' is trivial because of the delta function, 

yielding 

 



U N I V E R S I T Y   O F

ROCHESTER

DEPARTMENT OF CHEMISTRY

CHM 252              W. Udo Schröder

 

 

IV-44 

      
2 2

( )
2

2 20

2
( ) 1

t tt
M M

K K M
u t d e e

M M

 





−  − − 
= = − 

 
    (IV.67) 

 

This equation shows that fluctuations in the velocity due to random 

collisions with the gas particles, absent at t=0, build up over times 

of the order of   

 

2relaxt M           (IV.68) 

 

This is a relaxation time which is slightly shorter than the slowing-

down time tu,relax but of the same order. Therefore, fluctuations de-

velop on the same time scale as the Brownian particle is slowed 

down, as they should. In the long-time limit, the velocity fluctua-

tions become stationary, the second moment of the velocity distri-

bution no longer changes. Then, the Brownian particle has reached 

equilibrium with the gas particles and 

 

          2 K
u

M
          (IV.69) 

 

On the other hand, for this equilibrium situation, it is also known 

that the energy of random motion has to comply with the equiparti-

tion law, according to which 

 

           
2 1 1

2 2 2 2
B

M M K K
u k T

M 
 = =              (IV.70) 

 

This relation implies that there is a close relation between the time 

correlation function and the friction coefficient: 

 

  BK k T=          (IV.71) 
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This is an example of a very common relation, the Fluctuation-Dis-

sipation Theorem. It asserts that the moments of a probability dis-

tribution for an observable caused by the same random processes are 

dependent of each other. The magnitude of the fluctuations, repre-

sented by the constant K, is proportional to the friction coefficient 

and increases with increasing temperature. 


