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IV. Transport Phenomena 

 

The previous sections have illustrated how orderly and chaotic 

processes are inherent modes of many systems. Relatively simple 

systems with few degrees of freedom attain the different regimes 

according to the strength of some characteristic system parameter. 

Very complex systems, for example, multi-particle systems have a 

natural tendency to chaoticity. It was shown, how successive scat-

tering processes mediated by interactions between particles in a di-

lute system (a gas) have a high sensitivity to initial conditions and 

produce random motion of the particles after only a few collisions. 

Once a system has entered the chaotic regime, it becomes in princi-

ple impossible to follow the equations of motion of all particles, 

even for a moderately small system size. Complex systems with par-

ticles prohibit in general a microscopic treatment of the dynamics of 

all particles already for technical reasons. Here, one can at most 

sample the behavior of the system by considering a representative 

subset of the total particle ensemble. 

 

Fortunately, often the behavior of the individual particles is not 

of practical interest, and it is mostly the average, effective behavior 

of all particles together what actually counts. It is of interest, how 

the averages of certain observables behave, and perhaps the degree 

to which the actual variables fluctuate about the average trajectory.  

 

The definitions of average and fluctuations refer to the moments 

of a probability distribution of the corresponding variables. For ex-

ample, the macroscopic pressure of a gas sample, or the concentra-

tion of a reagent in a solution may change in time. This average be-

havior can be orderly, synergistic and self-organizing, as exempli-

fied by the oscillatory behavior of certain auto-catalytic chemical 

reactions (cf. Sect. II.1.2), and it can be completely or partially ran-

dom. The transition between the two domains is the result of 
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dynamical transport processes such as diffusion, convection, and 

dissipation. This transition is in essence unidirectional, from the 

more orderly to the more chaotic. The time evolution of these 

transport processes, resulting in a time-dependent probability dis-

tribution f of the variables describing the system, will be considered 

next.  
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IV.1. Master, Fokker-Planck  and Diffusion Equations 

 

In the following, the system of interest will be described in terms 

of the multi-variate probability distribution f(qi;t) of all variables qi 

describing the macroscopic, average state of the system as a function 

of time t. In general, probability can never be created or lost, it flows 

from one domain to the other, in certain ways like an incompressible 

liquid. As an example, one may consider a multi-particle system, 

where the probability (density) is defined as the number dN of par-

ticles per volume element dV 

 

       f r
d N

dV
( )

=            (IV.1) 

 

and a probability current as the flow of particles with velocity

u  

 

           

 


j
d N

dV

dr

dt
f u=  =                    (IV.2) 

In terms of probability and associated current, one can formulate a  

 

d f

d t

f

t
j= + =





 
0

           (IV.3) 

 

well known also from quantum mechanics. This equation states the 

conservation of probability mathematically in terms of the total 

time derivative, which vanishes, i.e., df/dt = 0. The total derivative 

is the sum of the partial derivative of f with respect to time, f t , 

Continuity Equa-
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testing for an explicit time dependence of 

f, and the divergence term describing the 

change of probability at the given position, 

just due to the probability flow through the 

volume element of interest. The continuity 

equation states, hence, that the time de-

pendence of the probability is due to the 

fact that the gradient of the probability 

current 

j is non-zero. For example, the time dependence is a gain 

in probability, if the current gradient is negative, 
 
 j 0 . For 

 
 =j 0 , as shown in Fig. IV.1, there is no change in the probability 

to find a particle in the volume element pictured. 

 

To discuss a simple example more specifically, let the probability 

flux be one-dimensional, such as in-

dicated in Fig. IV.2. This is both an 

application of the Continuity Equa-

tion and an illustration of its self-ev-

idence.  

 

The probability currents in posi-

tive and negative direction are de-

noted by j+ and j-, respectively. Di-

vide further the one-dimensional 

space into discrete bins numbered n. 

Consider now the time-dependent probability fn(t) for bin n  (proba-

bility to find a particle in this bin n at time t). This bin receives and 

transmits probability from and into the neighboring bins, n+1 and 

n-1, respectively. Origin and direction of these flows or currents are 

indicated by the arrows in the figure. There are obviously only four 

different currents involving bin n, to and from the bin and in either 

direction. 

dV

Figure IV-1:     

Probability flow. 

j-(n) j-(n+1) 

j+(n-1) j+(n) 

n-1 n n+1 

Figure IV-2: Probability 

balance, one dimension. 
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The balance of probability in bin n can be calculated as 

 





f t

t
j n t j n t j n t j n tnb g = − − − + + −+ + − −( , ) ( , ) ( , ) ( , )1 1     (IV.4) 

 

This is intuitively clear and follows also from the Continuity Equa-

tion IV.3. The differences are just representations of the correspond-

ing current gradients 

 

     
    
 =  − = −− + + −j j j j jc h   .           (IV.5) 

 

to be inserted into Equ. IV.3. The first bracket term in Equ. IV.4 

describes the net loss of probability from bin n, the second the net 

gain in probability by this bin. Using the product form of the cur-

rents given by Equ. IV.2, one can rewrite Equ. IV.4 as 

 





f t

t
u n f t u n t f t u n u n t f tn

n n n

b g
= − + + − ++ − − + + −( ) ( ) ( , ) ( ) ( ) ( , ) ( )1 11 1  

The velocities u+ and u− play the role of transition probabilities for 

particles between different bins, e.g., 

 

   
w

t

u

n
un n→ +

+
+  =1

1

            (IV.7) 

 

It is reasonable to assume that these transition probabilities are char-

acteristic only for the different bins which they connect but do not 

dependent on time nor on the probabilities fn to find particles in each 

bin. Then, one can rewrite Equ. IV.6 as a 

 

(IV.6) 
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The above equation has been derived for the case, where bin n is 

connected only to the nearest neighbors, with every summation in-

dex having only the two values m n= 1. However, one can trivially 

include the case of m = n, which contributes zero to the sum. One 

can also extend the summation m to all possible states, if transition 

probabilities can connect these states. Furthermore, it is not neces-

sary to consider the Master Equation as a one-dimensional transport 

equation. Each state can be characterized by an entire set of varia-

bles, such that the bin number n represents an entire set of coordi-

nates. For example, it is trivial to show the validity of the two-di-

mensional Master Equation for transitions on a two-dimensional x-

y grid, where the two coordinates are represented by separate bin 

numbers: 

 

       


 t
f t w f t w f tn n m m n n m m n n m m n n

m m

, ' , ' , ' , ' , ' , ' , '

, '

b g b g b gm r= −→ →    (IV.9) 

 

The Master Equation is a general classical rate equation describ-

ing the change in the population of a state (here of bin n) via transi-

tions to and from this state, from and to other states of the system. It 

is classical in the sense that it neglects interference terms in the 

quantal transition amplitudes and presumes an absence of particle 

correlations, e.g., the Pauli Principle which would block transitions 

to an extent that the final states are already occupied with some 

probability. In an approximate manner, the effects of this "Pauli 

 

 

(IV.8) 
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blocking" can be taken into account by multiplying the transition 

probabilities wn m→  in Equ. IV.8 by the blocking factors 1− fmb g  rep-

resenting the probabilities that a final state m is available for the 

transition n m→ .  

 

The Master Equations IV.8 or 9 represent prescriptions of how to 

propagate from an initial set of probabilities f tn = 0b gm r  at t=0 to a 

final distribution of probabilities f tn  0b gm rover the accessible 

states. Since it allows the system to make transitions from a single 

given initial state to several, perhaps many, other states, the effect is 

a spreading in time of the probability over many states. Hence, the 

Master Equation describes a dissipative process. A two-dimensional 

dissipation process is illustrated schematically by Fig. IV.3 below 

and an animation, both produced with the code 

MATHCAD_252\Random_Walk.mcd. The calculation assumes 

that at t=0, all probability is in a single state, the center bin of a two-

dimensional x-y grid. From here, transitions are possible to states 

chosen at random with probabilities that are equal within a given 

distance of a bin from the center. As can be seen, the probability 

spreads out from the initial center-bin population to fill most of the 

Random Walk of Particles, t=280
50

50

y
n i

5050 x
n i

Random Walk of Particles, t=10
50

50

y
n i

5050 x
n i

Figure IV-3: Two-dimen. random walk of 200 particles 
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available space. The animation illustrates the changing speed of dis-

sipation. The probability spreads very fast at first, but at later stages 

of the process, it takes more time to fill the space evenly. This is to 

be expected, as the accessible space becomes larger and larger in 

each step. 

 

The tendency of spreading probability in a dissipative process can 

be visualized most readily in a one-dimensional case, the simplest 

interpretation of Equ. IV.8. A further assumption that the probabil-

ity, w w w wn m n m m n m n, ,: := = =→ → , for populating and depopulating, is 

often fulfilled, if not demanded by quantum-mechanical rules. The 

Master Equation for such a simple case reads 

 



 t
f t w f t f t

f f

f f
n m n m n

m

m n

m n

b g b g b gm r= − =
 

 

RST ,

0

0  (IV.10) 

 

This implies that bins n receive probability from all other cells m, 

whose population is larger than that of bin n. Bin n transfer proba-

bility to all other bins m that have a smaller population than bin n. 

Eventually, when all bins have the same average probability, 

f fm n , the dissipation process described by the Master Equation 

comes to a halt. This implies that asymptotically, for t → , the 

system attains equilibrium with an equipartition of the probability 

among all accessible states: 

 

     lim .
t

n n equ
f t f const

→
= =b g b g         (IV.11) 

 

Transport processes are often called equilibration and relaxation 

processes, since they lead a system that is initially very far from 

equilibrium to its final equilibrium state, given enough time. 
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Equation IV.11 represents an operational definition of the situa-

tion of thermal equilibrium: On average, the probabilities for differ-

ent micro-states are all equal and do not change in time. However, 

in each for each sampling measurement, the actual populations of 

the states may vary from the average. That the Maxwell-Boltzmann 

distribution of the positions of gas particles at equilibrium have 

equal probabilities, whereas the corresponding velocities appear 

with very different probabilities, is not a contradiction to this prin-

ciple. States (or bins) with different velocities are not equivalent. In 

a collision process, high velocities are not produced as readily as 

low and intermediate velocities. 

 

The explicit form of the Master Equation IV.8 containing the 

probabilities of all states, as well as all connecting transition proba-

bilities for all times, makes it a very flexible equation of motion for 

a large class of systems. It also lends itself easily to realistic simu-

lations of the transport processes. However, it is also very difficult, 

if not impossible,  to solve accurately for system with many degrees 

of freedom. Therefore, approximation methods have been devel-

oped that allow analytical solutions for quasi-continuous processes. 

Such methods transform the Master Equation to a Fokker-Planck or 

a so-called diffusion equation.  

 

In the following, for simplicity the one-dimensional process de-

scribed in Equ. IV.6 is considered again. However, it is now as-

sumed that the velocities u+ and u− and the probabilities fn are con-

tinuous functions of the bin number n. This is a particularly good 

assumption for spatial degrees of freedom, which are naturally con-

tinuous. The assumption is also valid for energies that are high 

enough, such that the quantal energy spectrum which is discrete at 

low energies has degenerated into a classical continuum.  
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Under these conditions, one can expand terms in Equ. IV.6 in a 

Taylor expansion up to second order to obtain the corresponding 

Fokker-Planck Equation. Specifically, one replaces the probability 

currents j+ and j− by such Taylor expansions: 

u n f t u n f t
n

u n f
n

u n fn n n n+ − + + +− −  − +( ) ( ) ( ) ( )1
1

2
1

2

2








b g b g  

and 

u n f t u n f t
n

u n f
n

u n fn n n n− + − − −+ −  +( ) ( ) ( ) ( )1
1

2
1

2

2








b g b g  

 

Adding the two above equations IV.12a and b, one regains, from the 

terms on the l.h.s. of Equs. IV.12, Equ. IV.6 for the partial time de-

rivative of the probability fn and a second-order approximation to it, 

from the terms on the r.h.s. The resulting equation for the time-de-

pendence of the probability has the form of a  

 

Here, the transport coefficients contain the scientific information 

on the transport process. They are defined as 

                

 

 

(IV.12a) 

(IV.12b) 

 
(IV.13a) 
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The drift coefficient describes the difference in the probability cur-

rents j+ and j− , while the diffusion coefficient represents an aver-

age undirected mobility of the system. 

 

For constant transport coefficients, which do not depend on the 

bin position n, vn=const. and Dnn=const., the Fokker-Planck Equa-

tion has Gaussian solutions: 

     f t
t

n n t

t
n

n n

( )
( )

exp
( )

( )
= −

−R
S|
T|

U
V|
W|

1

2 22

2

2
 

b g
       (IV.14) 

 

This can be proven by inserting the normalized function IV.14 into 

the Fokker-Planck Equation. Here, n t( ) is the average n (the first 

moment) and  n t2 ( ) is the variance in n (the second moment). Both 

moments are defined with respect to the probability distribution of 

Equ. IV.14, both are time dependent quantities. The average indi-

cates the position of the Gaussian probability distribution, while the 

variance indicates its width. Both n t( ) and  n t2 ( ) are linear func-

tions of time: 

 

     

n t n v t

t D t

n

n n nn

( ) ( )

( ) ( )

= + 

= + 

0

0 22 2                    (IV.15) 

 

 

The Gaussian probability distribution of Equ. IV. drifts to the side 

with constant velocity, while it broadens. It is interesting to note that 

 
(IV.13b) 
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the drift and width grow in a correlated fashion, independent of 

time. Specifically, the ratio of first and second moment of the prob-

ability distribution for the variable n is a constant: 

 

  
n t

t

n t n

t

v

D
const

n n n

n

nn

( )

( )

( ) ( )

( ) ( )
.

  2 2 2

0

0 2
=

−

−
= =         (IV.16) 

 

Figure IV.4 shows as an example of a Fokker-Planck process the 

diffusion of argon  ions in air at 25oC, as given by Equ.IV.14, with 

a realistic diffusion coefficient of D=1.2 cm2/s and a large drift 
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Figure IV-4: Fokker-Planck diffusion and drift of Ar ions in 

air with applied electrostatic potential 

D = 1.2 cm2/s 

v = 0.4 cm/s 

time 
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coefficient of v=0.4cm/s, the latter due, e.g., to some applied exter-

nal electric field. (MATHCAD_252\Fokker_Planck_Sol.mcd) 

Shown is a time span of only 80 s after the release of the Ar into the 

atmosphere. With increasing time, the Ar ions are seen to disperse 

in space and, as a whole, drift to the right. After only a minute or so, 

the half width of the probability distribution has increased to the or-

der of 0.5 m. The process can be also be viewed dynamically. The 

animation suggests ways to determine experimentally the two 

transport coefficients by measuring two moments of the probability 

distribution developing as a function of time. 

 

Of course, if the space of the variable n is homogeneous, the prob-

ability currents j+ and j− are equal, and the drift coefficient van-

ishes, vn=0. Then, there is no reason for the probability distribution 

to drift in time to one side, although it will still become broad in 

time. For vanishing drift coefficient, the Fokker-Planck Equation 

IV.13 degenerates to the  

 

This diffusion equation has a simple structure. The time-rate of 

change of the probability fn is proportional to the diffusion coeffi-

cient Dnn. The larger in magnitude the diffusion coefficient, the 

faster the probability fn will change in time. The rate of change of 

fn is also proportional to the spatial curvature of fn, not its gradient. 

As an immediate consequence of this feature, one concludes that, if 

the probability fn has a linear dependence on n anywhere, the proba-

bility remains linear. For example, a constant probability fn = const. 

 
(IV.17) 
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will not be influenced by the diffusion process. Each bin receives as 

much probability from its neighbors as it transmits to them. This 

behavior is consistent with the fact that the drift coefficient is zero 

and the eventual attainment of equilibrium.  

 

Of course, a non-zero slope of the probability would induce a 

flow from the higher to the lower probability and hence an average 

drift. According to Fick's (empirical) Law a gradient in concentra-

tion (probability) f always leads to an average current j flowing in 

the direction of the steepest gradient and whose effect is to eventu-

ally eliminate that gradient: 

 
 
j D f=−                  (IV.18) 

 

where D is the diffusion coefficient indicating the mobility of the 

carriers of the property of interest. It is easy to see that Fick's Law 

is consistent with the diffusion equation, because from Equ. IV.18, 

it follows that 

      

   
 =−  = −j D f D f         (IV.19) 

 

Here,  is the Laplacian differential operator, defined in Cartesian 

spatial dimensions {x,y,z} as  =  = + +
RST

UVW
  











2

2

2

2

2

2x y z
 

 

Using the continuity equation, one derives from Equ. IV. 20 with 

just one dimension n:  







t
f t j D

n
f tn n( ) ( )= − =+

  2

2        (IV.20) 

Equ. IV.20, however, is exactly the diffusion equation derived ear-

lier. Taking the gradient of Fick's equation leads to the diffusion 

equation. What gets lost in the comparison are components of the 
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probability current which are constant with respect to the spatial var-

iables and have zero derivatives. Such currents are, however, in-

cluded in the Fokker-Planck Equation with non-zero drift coeffi-

cients. Hence, the latter equation is the more appropriate equation of 

motion to use for the probability, if there is an initial linear variation 

of f about its average.  

 

The diffusion 

equation has Gauss-

ian solutions, like the 

Fokker-Planck equa-

tion, except that, for 

the simpler diffusion 

case, there is no aver-

age drift of the entire 

probability distribu-

tion in time. Conse-

quently, the probabil-

ity distribution does 

not drift away in time 

from its initial posi-

tion, but simply 

broadens. The solu-

tions to the diffusion equation are Gaussians of the form of Equ. 

IV.14, however, with a fixed average value n t n( ) ( )= 0 , as seen in 

the example of Fig. IV.5, calculated for a schematical case 

(MATHCAD_252\1D_Diffusion.mcd). 

 

In the animation of this diffusion process, one observes again a 

very rapid change (broadening) of the concentration of the probabil-

ity at first, when the probability has a large curvature (second spatial 

derivative), followed by a more gradual decay. In view of the above 

discussion of Fick's Law and the structure of the solutions (Equs. 
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Figure IV-5: Time evolution of prob-

ability 
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IV.14 and IV.15), this is no surprise. The variance increases in pro-

portion to the time elapsed in the diffusion process. Therefore, the 

width, which is proportional to the standard deviation (see Tutorial), 

the square-root of the variance, changes with the square-root of time. 

 

In Fig. IV.5, one observes a Gaussian probability distribution for 

the position x, 

 

     
f x t

t

x x

t
x x

( , )
( )

exp
( )

= −
−R

S|
T|

U
V|
W|

1

2 22

2

2
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b g
        (IV.21a) 

 

with average position x x=: and a variance in position x given by 

 

             x x xxt x x D t2 2 2 2 0 2( ) ( )= − = +       (IV.21b) 

 

It is no surprise that the only non-zero moments of the probability 

distribution defined by Equ. IV.21a are the first and second mo-

ments and that only the second moment is time dependent. The cor-

responding differential equation does not contain any information 

other than on the curvature of the spatial probability function. 

 

Choosing the origin of the x-axis appropriately, such that the av-

erage position is at zero, i.e., x = 0 , and starting with a vanishing 

initial variance,  x

2 0= , one has the experimentally interesting re-

lation 

                            D
t

t
t

x
t

xxx x rms=


=


=


1

2

1

2

1

2

2 2 2 ( )        (IV.22) 

 

This equation implies that the average, rms displacement of the par-

ticles in a diffusing sample grows only with the square root of time,  
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   x D trms xx=  2          (IV.23) 

 

Equation IV.23 allows one also to determine the diffusion coeffi-

cient from experimental values for the rms distance xrms , the square-

root of the variance  x x2 2=  , at time t of the particles from their 

point of origin at t=0. 

  

One can now obtain an estimate for diffusion coefficients in the 

gas phase from the earlier discussion of molecular collisions. Con-

sider particles of type A diffusing in a gas of particles of type B at 

equilibrium temperature T. It is reasonable to assume that particles 

A attain equilibrium with the other gas particles B very quickly. 

Then, one can apply the results of Section III.4. The total mean-

square displacement xrms

2
 of a particle A depends on the number of 

collisions NAB(t) with particles B and the mean-square displacement 

xi rms,

2 2  associated with each of the NAB collisions that have oc-

curred up to time t. Since, in the present approximation, all of these 

collisions are thought to be independent of each other, the variances 

 x i i rmsx2 2c h = ,  of the distribution of displacements after each collision 

simply add up (see also Tutorial Moments): 

 

   x x N trms i rms

i

N t

AB

AB

2 2

1

2=  
=

 ,

( )

( )          (IV.24) 

 

Here,  is the mean free path for collisions AB, equal to the rms 

displacement. Adapting the collision rate calculated in Equ. III.89 

for one particle A, one has 

 

       N t u tAB B AB AB( ) =            (IV.25) 

 

file:///H:/My%20Webs/Chm%20252_455%20Statistical/Chm252_99/ChIII-4.doc
file:///H:/My%20Webs/Chm%20252_455%20Statistical/Chm252_99/Moments.doc%23variance


U N I V E R S I T Y   O F

ROCHESTER

DEPARTMENT OF CHEMISTRY

CHM 252              W. Udo Schröder

 

IV-18 

which can be inserted into Equ. IV.24, yielding 

 

         x N t u t
u

trms AB B AB AB

AB

B AB

2 2 2  =    = ( )    
 

  (IV.26) 

 

Here, the notations are as usual for the particle number density B, 

the mean relative velocity uAB , and the collision cross section AB. 

The characteristic relative (rms) velocity in AB collisions has al-

ready been deduced (cf. Equ. III.121) 

 

    
D

x

t

u k T
xx

rms AB

B AB

B

B AB

=  =
2

2 2

2

    
       (IV.27) 

 

where  =


+

m m

m m

A B

A B

 is the reduced mass for the binary colliding 

system AB.  

 

According to Equ. IV.27, the diffusion coefficient, representing 

some average mobility of particle A in gas B, increases with the root 

of the temperature. This is so, because the inherent velocity of par-

ticle A in thermal equilibrium increases with the root of T. Further-

more, the mobility is reduced for heavy particles, again because they 

are slower. The inverse dependence on density of the gas and the 

collision cross section also makes sense. The larger the product of 

these quantities, the more frequent are collisions within the gas, and 

the shorter are the distances that particle A travels, before its direc-

tion of flight is changed again.  

 

For these reasons, diffusion coefficients are rather different for 

different materials. Some examples are listed in Table IV.1. Gases 

typically have diffusion coefficients of the order of D cm s~ /100 2
, 
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with qualitatively the expected dependencies on size. Metals in mol-

ten, liquid form have coefficients that are many orders of magnitude 

smaller than that, D cm s~ /10 14 2−
. For the latter materials, meas-

urements of transport coefficients use radioactive tracer methods. 

 

Table IV-1: Experimental Diffusion Coefficients 

System D/cm2s-1 T/K System D/10-5cm2s-1 T/K 

He-He 2.38 275 Au in Ag 2.46 1253 

He-H2 0.25 90 In in Ag 3.81 1253 

He-N2 0.09 77 Sb in Ag 4.11 1253 

He-SF6 16.36 2900 Ag in Ag 1.27 10-9 723 

Ne-H2 0.15 90 Co in Co 0.95 10-9 1043 

Ne-N2 0.32 293 Fe in Fe 21.1 10-9 1173 
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The empirical temperature dependence of two gas diffusion co-

efficients is plotted in Fig. IV.6. The dependence is qualitatively as 

expected. However, the experimental data increase faster than the 

square-root behavior expected. 

 

For the purpose of numerical simulations used in this discussion 

to illustrate diffusive processes differential equations of motion can 

be converted into finite-difference equations. For example, the first 

time derivative of the probability density fn(t) is approximated by 

the difference equation 
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Figure IV-6: Temperature dependence of gas dif-

fusion coefficients. 
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
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 Analogously, the second spatial (n) derivative is approx-

imated by the difference equation 
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In this approximation, the diffusion equation leads to the following 

iteration scheme for the probability 

 

     f t f t
D t

n
f t f t f tn i n i

nn
n n n( ) ( ) ( ) ( ) ( )+ + −= + − +1 2 1 12



b g  (IV.30) 

 

Hence, the probability at spatial position n at time ti+1= ti +t is 

determined by the spatial distribution of f at the earlier time ti and 

the diffusion coefficient Dnn.  

 

 

 

 

 

(IV.29) 

(IV.28) 


