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III.3. The Kinetic Theory of Ideal Gases 

 

The first glimpse at the origin of thermodynamic laws is already 

provided by the very simple microscopic model of an ideal gas  of 

non-interacting, structure-less particles (atoms or molecules) mov-

ing randomly inside a container and colliding elastically with its 

walls. This model already provides an understanding of the structure 

of the most important gas law, the ideal-gas EOS, if the motion of 

the gas particles is in fact random.  

 

Consider first a single gas particle of mass m and initial momen-

tum

pi in a rectangular container with rigid walls, shown on the left 

in cross-sectional view. Let a coordinate system {x,y,z} be aligned 

with the edges of the container. This geometry facilitates the follow-

ing calculation but does not restrict the generality of the conclusions. 

 

The particle under consideration will eventually collide with one 

of the container walls, e.g., the one on 

the right, which is assumed to be parallel 

to the y-z plane. The collision with the 

rigid wall is assumed to be elastic, i.e., 

essentially no energy is lost by the parti-

cle. This would be exactly true only, if 

the mass (MWall) of the wall were infi-

nitely large, such that a collision with a 

gas particle would impart very little en-

ergy, namely  
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Figure III-8: Reflection 
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for any momentum q transferred to the wall. For the present discus-

sion, it is assumed for simplicity that the wall is at rest, i.e., that the 

mass MWall of the wall is very large compared to the mass m of a gas 

particle (MWall  m). Then, the particle is reflected almost perfectly 

from the wall, that is, its momentum components parallel to the wall, 

py and pz, are not changed in the collision, but the component per-

pendicular to it, px, is reversed in direction, i.e., it changes its sign 

but not its magnitude | px |: 
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               before                            after 

 

Since in every collision, there is conservation of linear mo-

menta, i.e., the sum of all momenta remains constant, the wall must 

have received the difference in the momenta of the particle before 

and after the collision. This must be true, even though the mass of 

the wall is assumed to be very large. This momentum transfer to the 

wall is equal to 
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This means that the container wall experiences a “kick” in the 

x>0 direction. This kick can be viewed as a force Fx, acting on the 

wall during the short time t of the collision. Because of Equ. 

III.66, the relation between momentum transfer and force is given 

by 

 

    Fx• t = qx = 2px        (III.67) 

  
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Fx is the force that the container wall “feels” during the time t, 

from the effect of a single particle colliding with it.  

 

However, there may be many particles in the gas container, some 

of which collide with the wall on the right, some collide with one of 

the other walls. The question is: How many particles collide with 

the wall during the same (small) time interval t? - The answer is 

simple and can be obtained by counting the number of particles in a 

"collision layer" (shaded in Fig. III-9) in front of the container wall. 

If a particle has a velocity compo-

nent in positive x direction, i.e., ux 

= px/m > 0, the particle moves to 

the right and will eventually hit the 

right wall, those with ux < 0 will hit 

the wall on the left. If, by assump-

tion, the motion of the gas parti-

cles is truly random, 1/2 of the par-

ticles will have ux < 0, the other 1/2 

will have ux >0. If there are N particles in the container, then N/2 

will eventually collide with the wall in question, given enough time 

t.  

 

However, only those particles that are close enough to the wall 

will actually hit it during t. Only those that are closer than x = 

ux• t and have ux > 0 will do so. This implies that all particles in 

the volume V= A• ux• t with ux > 0 will impinge on the wall. 

With a particle density of  = N/V, one calculates that 

      

         N V N A u t Vx+ =  =   1 2 1 2b g b g          (III.68) 

 

 

Figure III-9:Collision Layer 
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particles impinge on the wall within the time interval t, each trans-

ferring a momentum qx = 2px to the wall. The total momentum trans-

fer during t is then given by 

      

                  F t N p N A mu t Vx x x =  =   + 2 2b g      (III.69) 

 

Therefore, the pressure on the wall, defined as force Fx per area 

A, can be written as    

 

  p F A N mu Vx x= =  2
  (III.70) 

or 

     p V N mux =  2
   (III.71) 

 

Realizing that the particles may not all have the same velocity, the 

quantity ux
2 has been replaced in Equ. III.71 by the average, ux

2
,  

over the entire particle ensemble.  

 

A similar calculation can be done for any other wall, taking into 

consideration also the other independent components, uy and uz, of 

the gas particles. If, as assumed, the motion is truly random, then 

there is no reason, why the average of the velocity ux in x direction, 

or its square, should be any different from those in other directions. 

Therefore, it is justified to take 

 

                u u u ux y z

2 2 2 21 3= = = ( / )       (III.72) 

 

where the speed of the particles is defined as 

 

      u u u u u ux y z= = = + +
 2 2 2 2

      (III.73) 
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Then, Equ. III.71 can be transformed into 

 

  p V N mu = ( / )1 3 2
        (III.74) 

 

which is now independent of any coordinate system adopted. 

 

Since the kinetic energy of a gas particle is equal to  =(1/2)mu2 

relation III.74 can be rewritten as  

  

   

Equ. III.75 makes good sense, because it relates (something like) 

the total energy content pV [= (force/area) area distance] of the gas 

to a product of average energy per particle,  , and the number of 

particles, N, in the gas volume. Since V and, hence, the product pV, 

are extensive observables, it must be that pV  N1 and 

no other power of N must appear. In other words, the 

average specific (per particle) kinetic energy   is seen to deter-

mine the magnitude of the total energy content per particle,  pV/N, 

as is plausible. This average specific energy   naturally depends 

only on the heat content of the gas, which is determined by the 

temperature T. What remains to be explained is the factor (2/3) in 

Equ. III.75. The present phenomenological treatment does not ex-

plain this factor, it only provides the structure of the EOS. However, 

comparing Equs. III.60b and 75, one derives an expression for the 

average kinetic energy of the gas particles: 

( III.75)  

 p V N = ( / )2 3 

file:///C:/Users/Owner/Downloads/ChIII-2.doc%23IG_EOSpart
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Furthermore, since the motion of the 

particles along any of the x, y, and z “degrees of freedom” is inde-

pendent, the average total energy is equal to the sum of the average 

energies associated with the individual degrees of freedom, 

 

 

    

    

   

 

One concludes the validity of an Equipartition_Law 

 

This Equipartition Law (Equ. III.78) has been made plausible 

here only for the kinetic energies of gas particles. However, it is de-

rived more 

rig-

orously 

in the 

theory of 

statistical 

mechanics. This Equipartition Law is valid for essentially all de-

grees of freedom of practical interest. This is a very useful result, 

because it allows one immediately to estimate a number of quantities 

related to the average energy per degree of freedom, for an arbitrary 

system at thermal equilibrium. It also helps to understand the rela-

tion between the concepts of temperature and internal energy of a 

system. 

 

 = 
3

2
k TB

 

(III.76)  

  x y z Bk T= = =
1

2  

(III.78)  

 

 (III.77)
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For ideal gases at equilibrium, including mixtures of different 

types i, the Equipartition Law implies that all particles have the 

same average kinetic energies, ( )i , which are dependent only on 

the common temperature T but independent of their masses mi. From 

this statement, one concludes immediately that the velocities must 

scale inversely with the masses of these particles. Considering, for 

simplicity, only two different particle types and only the x degree of 

freedom and the associated velocities ux(i), Equ. III.77 can be used 

to calculate this scaling: 

 

   x x B x x
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2
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2
2

2
21 2 2 2= = = =     (III.79) 

 

Therefore, one derives 

 

   u u m mx x

2 2

1 22 1( ) ( )=    (III.80) 

 

Heavier particles in the equilibrium gas mixture move more slowly 

than the lighter particles in the mixture. 

 

Obviously, the same arguments can be made for the other degrees 

of freedom y and z, saying that the mean-square velocities u i2( )  

scale inversely proportionally with the masses mi of the particles, 

i.e., u i mi

2 1( )  −
. As will be shown later on, the mean velocities 

u i( ) differ only by a constant numerical factor from the root-mean-

square velocities  u i2( ) . Hence,  

 

         u i mi( ) / −1 2
   (III.81) 
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In thermal equilibrium with other gas particles, heavier particles 

move more slowly than the lighter ones. 

 

This latter principle has important applications for the decompo-

sition of mixtures, e.g., the industrial separation of isotopes of a gas, 

or the differential permeability of membranes in biology and med-

icine. Here, one uses the scaling of the velocities with the inverse 

mass to deplete a gas mixture of the more mobile, lighter particles.  

 

The method uses a gas container with small holes or pores 

through which particles can escape (effuse) from the container for 

further processing. The principle is illustrated in the sketch showing 

a container with two gas particle types i =1,2. The derivation of the 

rates of effusion of the particles through the hole in the container is 

simple, following Equ. III.68 with 

the average x velocities of the par-

ticles given by u ix( ): The number 

of particles N+(i) escaping 

through the hole of area A per unit 

time t is given by 

  N i V N i A u i t Vi x+ =  =   b g b g b g b g1 2 1 2 ( )  (III.82)          

 

where i = N(i)/V is the (partial) particle density of component i. 

This is different from the partial mass density defined as  

        m(i) = mi• i.    (III.83) 

 

The effusion rates are then seen to be proportional to the partial 

densities and to the inverse of the square-root of the particle masses:

    

 

Figure III-10 
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The masses of the particles in an "ideal" gas, defined by the Equa-

tion of state (EOS), are the only properties that distinguish them 

thermodynamically from each other. This observation relates to the 

fact that the energies, and not the momenta or velocities, are charac-

terized by the same characteristic value  i Bk T= 1 2b g per degree of 

freedom (i). Hence, in thermal equilibrium, the energies are "equil-

ibrated". Yet, the simple but important EOS, relating the macro-

scopic state variables p, V, and T to each other, comes about from 

the momentum transfer to a wall, from the particles reflected from 

it. In the derivation of the EOS, an assumption was made of the ran-

dom distribution of the velocity directions. Given the deterministic 

laws of mechanical motion, it is not obvious, how such a random 

distribution may develop on its own, in an interaction-free ideal gas. 

In fact, this is the result of multiple interactions between the gas par-

ticles, chaotic molecular scattering. Such scattering processes will 

be considered next. 
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