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IV.2. Random Walk and Brownian Motion 

 

IV.2.1. Random Walk 

 

In the absence of spatial asymmetries leading to drifts in time of 

the entire probability distribution, the probabilities for transitions 

are isotropic, not dependent on the direction of the transition. This 

is the so-called diffusion limit. If the process occurs on a discrete 

spatial grid or lattice, one speaks of a random walk in space. In Fig. 

IV.7, a one-dimensional 

grid in x-direction is 

shown with bins labeled 

according to the number 

m of steps from the 

origin (x=0) of the ran-

dom walk. Each step of 

size x is chosen at ran-

dom with an equal probability for a step to the left (p-= 1/2) or to the 

right (p+= 1/2).  

 

Obviously, since the probabilities are equal to go left or right, on 

average, the random walker will still be at x = 0 or m = 0. However, 

the probability fm(N) is not zero for reaching position m after a total 

number of N steps. For this to happen, the walker must have made 

m more steps in the positive x direction than in the opposite direc-

tion. Since the total number of steps is equal to N, the numbers of 

steps in negative (N-) and positive (N+) direction are 

 

       N N m N N m− += − = +
1

2

1

2
( ) ( )        (IV.31) 

 

xm=0m=-2 m=1m=-1 m=2

x=0

Figure IV-7: Random walk in one di-

mension 
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For example, if the total number of steps is N=11, the number  N+= 

9 implies that there have been 9 steps in positive and 2 steps in neg-

ative direction. Hence, on this (and any) N+= 9 trajectory, m=7 more 

steps have been made in positive direction than in the opposite di-

rection. For positive m-values, the number N+ can range from N+= 

0 (no step to the right) to N+= 11 (all steps to the right). For negative 

values of m, the number N+ can range from N+= -1 (one step to the 

left) to N+= -11 (all steps to the left).  

 

However, whenever N+ has been determined, the number        N-

= N - N+ of steps to the other side is determined by the normalization 

N = N++ N-. Therefore, the entire range of possibilities is covered 

already by considering the range of N+  0 , i.e., 0  m N . Var-

ying N+ over its total range covers, hence, all trajectories twice. This 

affects the calculation of higher moments from the distribution for 

all N+. For example, the variance in N+ calculated with the full N+ 

distribution is twice the real variance and equal to that calculated for 

only the distribution for N+  0 .  One further realizes that, because 

of the linear relationship between N+ and m given by Equ. IV. 31, 

the m-distribution resembles the N+-distribution but is shifted and 

stretched by a factor of (2). 

 

Since the process is random, all pathways of length N are equally 

likely. Hence, to evaluate the probability for a given N+, which is 

equal to that for a given m, is equivalent to asking, how many ways 

there are to distribute N+ steps along a total of N steps. In other 

words, one has to answer the question as to how many ways there 

are to form an N+-tuple of numbers out of N total numbers.  
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An example is given in Fig. 

IV.8. The random degree of 

freedom is x, which is discre-

tized by the vertical grid lines. 

In each step x changes by 

x = 2 . The horizontal grid 

lines indicate the number of 

steps. For example, N=11 

steps correspond to 22 lines 

(squares) vertically down. The 

figure shows of the many (

2 2 204811N = = ) possible 

trajectories with N = 11 steps 

only 3. These three have been 

selected to end up in the same x-bin m=7. However, there are actu-

ally 55 trajectories ending up in bin m=7. 

 

To calculate the number of trajectories ending in a given bin m is 

obviously just a combinatorial counting problem. It is solved by the 

binomial coefficient for the associated number N+, 
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This coefficient is equal to the number of ways that a given number 

of objects N+ (e.g. N+= 9 particular steps), or N- (e.g. N-= 2 steps) 

numbers can be selected out of a total of N (e.g., N = 11 total steps). 

Therefore, the probability for a random trajectory to land at position 

m=7 x

Start

N=11

Figure IV-8: Some N=11 tra-

jectories ending in m=7. 
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m = 2N+ - N (e.g., m=7) after N total steps in random directions is 

given by the binomial distribution in N+ (or N-)  
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All these probabilities contain the common factor pN N
= 1 2b g , 

which is important only as an overall scaling factor, when compar-

ing trajectories with different numbers of steps N. Since here, inter-

est is on the relative probabilities within a given group of trajecto-

ries of equal length N, this factor could be dropped.  

 

Average value and variance for a binomial distribution are readily 

calculated (see Tutorial Moments). In this particular case, because 

of the symmetry of f  ( f N f NN N+ −
=( ) ( ) ), the average number of 

steps in positive direction must be equal to one-half the total number 

of steps, and the average m-value must be zero 

 

                                 N N m+ =  =2 0                (IV.34) 

 

This can be demonstrated directly with the binomial distribution 

of Equ. IV.33, using the fact that averages over the trajectories with 

respect to this probability distribution are calculated as 

 

     a a N f NN

N

N

= + +

+

 ( ) ( )
         (IV.35) 

 

with the normalization 

(IV.33) 

file:///H:/My%20Webs/Chm%20252_455%20Statistical/Chm252_99/Moments.doc%23Binomial_distrib
file:///H:/My%20Webs/Chm%20252_455%20Statistical/Chm252_99/Moments.doc%23Binom_Moments
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Therefore, one obtains from Equ. IV.35 for the average N+:  
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Here, a change in the start of the summation index from N+=0 to 

N+=1 is possible, because the N+=0-term is zero. On line 4 in the 

above equation, the summation index has been transformed to 

N'=N+-1. This allows one to transform the sum to a complete bino-

mial sum over all possibilities to form groups of N' out of (N-1) 

numbers, which is equal to unity (see Equ. IV.36 for N-1 total steps). 

Hence, the expectation of Equ. IV.34 has been proven. 

 

The same scheme can be applied to calculate the mean-square 

N+, yielding 

    N Np N N p+ + += + −2 21( )         (IV.38) 

 

(IV.36) 

(IV.37) 
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 With this information, one can calculate the variance in N+: 
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It is an important property of the random-walk process that both 

average and variance grow in proportion to the number of steps 

N. This implies a decrease with the number of steps of the relative 

deviation from the mean, defined by the ratio of standard deviation 

and mean, 

                

From the definition of m in terms of the number of steps in posi-

tive x-direction, N+, given in Equ. IV.31, one calculates for the var-

iance in m, 

 





m

N

m m N N N N N N

N N N N N N N

N N N N

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 4 4

4 4 4 2

4 4 4

= − = − = − +

= − + = − + =

= − = − =

+ + +

+ + +

+ + + +

b g

e j
 

 

Hence, the first two moments of the m-distribution are given by 

 

     m and Nm= =0 2        (IV.42) 

 

(IV.39) 

 (IV.40) 

(IV.41) 
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Correspondingly, the associated moments in coordinate representa-

tion are obtained just by scaling with the step size x 

 

           x m x x N xx m=  = =  =   0 2 2 2 2  ( ) ( )    (IV.43) 

 

As noted previously, although the average displacement after N 

steps is zero, a random walk has covered a net distance (displace-

ment) corresponding to the square-root of the number of steps, 

 

x x N xrms = = 2          (IV.44) 

 

It is shown elsewhere (see Tutorial Moments) that in the limit of 

a very large number N of transitions and a finite probability, the bi-

nomial distribution becomes a Gaussian 

 

   f N
N

m

N
m ( ) exp=  −

RST
UVW

1

2 2

2

       (IV.45a) 

 

and correspondingly, 
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( )
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Thus, the diffusion limit is recovered for a quasi-continuous (many 

small steps) random walk. This follows also directly from Equ. 

IV.33 by employing Stirling's approximation to N! for large values 

of N. In any case, the solution for the random-walk problem is equiv-

alent to that for a diffusion process (see Equ. IV.21a), as it should! 

Comparing the respective solutions, Equs. IV.21a and 45b, one 

identifies the variances of the two Gaussians: 

 

file:///H:/My%20Webs/Chm%20252_455%20Statistical/Chm252_99/Moments.doc%23Gaussian_Limit
file:///H:/My%20Webs/Chm%20252_455%20Statistical/Chm252_99/Stirlings_Form.doc
file:///H:/My%20Webs/Chm%20252_455%20Statistical/Chm252_99/ChIV-1.doc%23DiffEq_Gaus_Sol
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        x xxt N x D t2 2 2( ) ( )=  =       (IV.45c)  

 

This is expected, since the total mean-square displacement of an cu-

mulative process of independent intermediate steps equals the sum 

of the individual mean square displacements (see Tutorial). Further, 

the equivalence of the two expressions for the probability leads to 

m

N

x

Dt

2 2

2 4
=          (IV.46) 

 

Realizing that x/m = x, the step size, and N/t = Z the number of 

steps (transitions, interactions) per time t, one calculates 

  

 D
x N

tm

x m

t N
Z xxx = = =  

2

2

2

2

2 2

1

2

b g
b g ( )        (IV.46) 

 

This result is equivalent to the expression of the diffusion coeffi-

cient derived in Equ. IV.27. The diffusion coefficient is equal to 1/2 

the total quadratic displacement N (x)2 per unit time.  

 

This result can be applied to the random walk (or flight) of the 

particles in a gas. Here, the rms distance between collisions is called 

the mean free path l and Z is the rate of collisions between the gas 

particles. Then, the diffusion coefficient can be expressed in a beau-

tifully simple way: 

  

       
D Zxx =  

1

2

2
         (IV.47) 

 

For example, according to a homework problem, for air particles 

at normal conditions (p = 1 atm, T = 300K), the mean free path for 

collisions is  =  −9 3 10 8. m . The collision rate is approximately equal 

file:///H:/My%20Webs/Chm%20252_455%20Statistical/Chm252_99/Moments.doc%23variance
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to Z s=  −535 109 1. .  Then, Equ. IV.47 predicts a diffusion coeffi-

cient of D m sxx =  − −2 31 10 5 2 1. , which is in reasonable agreement 

with experimental data (cf. Table IV.1). 

 

Since the random walk is an independent process, even step by 

step, it is simple to generalize this process to a three-dimensional 

random walk. The three-dimensional probability density is simply 

the product of the functions for the individual degrees of freedom: 

 

f r f x f y f z
Dt

r

Dt

b g = =  −
RST
UVW( ) ( ) ( ) exp

1

4 4
3

2


  (IV.48) 

 

This derivation has made use of the fact that, since the random walk 

is isotropic, all diffusion coefficients are identical, i.e., Dxx= Dyy= 

Dzz=D. Therefore all variances are the same. Furthermore, it is 

r x y z2 2 2 2= + + . Since this distribution function is essentially a ra-

dial function, depending only on the distance r from the origin, it is 

useful to transform it to spherical (polar) coordinates and integrate 

over angles. Then, one obtains the radial probability function 
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2
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       (IV.49) 

 

The distribution of Equ. IV.48 applies for a given direction (
 
r r

), while Equ. IV.49 is angle-integrated. An actual probability is ob-

tained from this latter distribution by multiplying with the radial bin 

width r: 

 

             f r
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  (IV.49a) 

file:///H:/My%20Webs/Chm%20252_455%20Statistical/Chm252_99/ChIV-1.doc%23Table_Diff_Coeff
file:///H:/My%20Webs/Chm%20252_455%20Statistical/Chm252_99/Spherical_Coordinates.doc
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Integrated over all distances, the distribution function of Equ. IV.49 

gives unity (100%), it is properly normalized.  

 

It is now straight forward to calculate the displacement achieved 

in a three-dimensional random walk within a given time t. One has 

just to calculate the mean-square distance r2
with the distribution 

function of Equ. IV.49: 

 

r
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3 0
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24

4 4
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RST
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z


exp         (IV.50) 

 

This result was to be expected, since for one degree of freedom, 

say x, x N Dt2 2 2=  = . Since no direction is preferred, one ex-

pects 

                     r x y z N Dt2 2 2 2 23 6= + + =  =        (IV.51) 

 

Hence, random walk on a grid with equal probabilities to either side 

(p+=p- for each degree of freedom) is just the discrete form of a dif-

fusion process. The analogue of a quasi-random walk, where 

p p+ − leads to an overall drift of the probability distribution, exists 

also: It is the Fokker-Planck process. 
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