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 The Equation of State for Real Gases  
 

The kinetic theory of gases has provided a microscopic under-
standing of the equation of state of an ideal gas, 

 
  (1) Bp V N k T⋅ = ⋅ ⋅

 
a very important law. Here, p is the average pressure, V is the 
fixed volume of the container enclosing N non-interacting, struc-
tureless gas particles, T the constant temperature imposed on 
the gas from the outside, and kB is the universal Boltzmann con-
stant. Equation (1) relates the average internal energy content U 
of the gas, which is due to chaotic motion of the gas particles, to 
the temperature,  

 therm B

3
U N N k T

2
ε= ⋅ = ⋅ ⋅ ⋅  (2) 

 
This internal random-motion energy is also called “thermal en-
ergy”. For complex particles with more than translational degrees 
of freedom, such a random thermal energy can be defined also 
for the other degrees of freedom (dof). In thermal equilibrium, 
the average thermal energy per dof is always given by 
 

 therm B

1
U / dof / dof k T

2
ε= = ⋅ ⋅  (3) 

 
The most stringent precondition for this simple theory to hold 

is the absence of interactions between the gas particles. 
This can always be achieved for sufficiently dilute gases of any 
kind. However, for higher pressures or lower temperatures, de-
viations from the ideal-gas EOS can become substantial and de-
pend very much on the properties of a given gas and the experi-
mental conditions. Departures from ideal-gas EOS are usually 
measured in terms of a compressibility factor 

 
      Z := pV/NkBT      (4) 
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which is equal to unity for an ideal gas. The name reflects the 
fact that for Z > 1, one needs to exert a higher pressure than 
necessary for an ideal gas to enclose the gas in a given volume 
V. The gas is more difficult to compress than an ideal gas, i.e., it 
has a lower compressibility than an ideal gas. 
 

Experimental measurements give Z > 1 by a few per cent, for 
H2 or He, while Z < 1 for more complex molecules such as 
NH3 or CH4 indicates a higher compressibility for the latter type 
of molecule. At high enough pressures and/or high tem-
peratures, however, it is seen for all gases that Z > 1, i.e., 
it becomes more difficult to compress them. This implies 
that, with increasing pressure, the interaction becomes 
more repulsive. On the other hand, the interactions between 

complex gas mole-
cules are attractive 
when the pres-
sures (and the 
densities) are not 
too high, i.e., aver-
age distances not 
too small. For 
smaller distances, a 
repulsive core in 
the interaction po-
tential becomes ef-
fective.  

 
The quantitatively 

different behavior of 
simple and complex 
gases can be under-

stood in terms of the actual interaction potentials, which can be 
modeled in terms of the radial (r) dependence of the Lennard-
Jones potential 
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  (5) 

 
Here, ε is the strength parameter, and σ is the zero of the poten-
tial. The figure compares the potentials for Ar (VAR) and C6H6 
(VCH) with one another. The potential energies have been di-
vided by k (= kB) and are expressed in temperature units (de-
grees K), the distance is given in units of pm (10-12m). Obvi-
ously, the repulsive, hard core of the potential for the larger 
molecule reaches out to larger distances than for the smaller ar-
gon particles. Consequently, the deviations of C6H6 from the 
ideal-gas behavior occur already for larger distances and associ-
ated lower pressures. 
 

In order to understand the dependence on temperature and 
pressure of the average interaction felt by the particles in a gas, 
it is instructive to inspect typical trajectories of the particles in 
the gas. The figures below show numerically calculated projectile 
trajectories {xn=x(tn), vn=v(tn)}, the velocity of the projectile 
atom at time tn vs. its distance from the target atom. The calcu-
lations were done with a simple Molecular Dynamics code. The 
collisions are central (“head-on”) Ar-Ar collisions at two initial 
relative velocities, v0 = -0.16nm/ps (left panel) and v0 = -
1.6nm/ps (right panel). These velocities are typical (average) for 
T=30K and T=3000K, respectively. The target Ar atom is indi-

cated at rest, at the left of each plot.  
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In each case, the projectile approaches the target with an ini-

tial velocity v0<0 at x0=1, determined by the temperature T cho-
sen. In the approach phase, the projectile is first accelerated to-
wards the target, until it reaches the equilibrium distance, the 
minimum of the potential. After that, the projectile is slowed 
down by the repulsive part of the potential, until it reaches the 
distance of closest approach, where v=0. Thereafter, the projec-
tile is accelerated back with increasing velocity. After the projec-
tile has passed the potential minimum on its way out, it is decel-
erated by the attractive part of the potential.  

 
From the shape of the trajectories, one observes that the pro-

jectile spends a larger fraction of its trajectory within the attrac-
tive potential when it has a low initial velocity. A fast projectile 
traverses the attractive (V<0) potential very rapidly and runs 
high up the repulsive (V>0) core of the potential. For the two 
cases pictured above, the numerical integration along the trajec-
tories yields average effective potentials of <V>=-13 kBK and 
<V>=+79kBK, for the low and high incident velocities, respec-
tively. This behavior implies that at low temperatures, the effec-
tive pressures of a real gas are lower than those of an ideal gas. 
At high temperatures, the situation is reversed. In the latter 
case, the real gas seems to be less compressible than an ideal 
gas.  There is obviously a classically forbidden space around each 
atom which is inaccessible by the other particles. Because of the 
very steep repulsive core of the potential, the radius of this ex-
cluded “co-volume” does not depend noticeably on the particle 
velocities, i.e., it is not strongly dependent of temperature of the 
gas. 

 
In order to account for these non-ideal effects, one devises an 

effective equation of state (EOS). For example, one may add to 
the ideal-gas EOS (1) higher-order terms in pressure p or density 
. One then arrives at a virial expansion in p, ρ

 
 p$V = NkBT + B(T)$p + C(T)$p2 + ….              (6) 

 



 U N I V E R S I T Y   O F 
ROCHESTER 

DEPARTMENT OF CHEMISTRY 
EOS-RealG              W. U. Schröder 

 

5

which depends on the first, second, etc., virial coefficient 1, B, 
C, etc. Analogously, one could expand the product pV in powers 
of the density ρ: 
 

        p$V = NkBT + B’(T)$  +C’(T)$ρ ρ2+ ….                (7) 
 
with corresponding virial coefficients 1, B’, C’, etc. 
 

A first qualitative understanding of the modified equation of 
state of real gases was achieved by van der Waals (1837-
1923) taking account of the finite volume of the gas molecules 
themselves, the so-called covolume b, which prevents the total 
collapse of the volume at T = 0. The available volume is strictly 
not equal to the container volume V = Videal, but is reduced by 
the covolume appropriate for the number N of gas particles: 

 
          Videal → Videal = Vreal - Nb              (8) 

 
At normal temperatures and pressures, this volume correction is 
relatively small, at most of the order of 10-4. However, in many 
industrial applications, where pressures of 100 atm to sev-
eral1000 atm are employed, the covolume is no longer negligi-
ble.  

 
Furthermore, the interactions neglected in the ideal-gas model 

are expected to also modify the pressure. For low temperatures, 
the average interaction between the particles of a real gas is at-
tractive. Hence, particles are effectively retained by the potential, 
and the pressure which they exert on the container walls is re-
duced. For room temperatures, or higher, the opposite is true. To 
account for this pressure effect in theoretical descriptions, one 
should add a pressure correction term to the actual pressure. To 
obtain an estimate, one realizes that the frequency of particle-
particle interactions or ‘collisions’ scales with the probability to 
find two particles at roughly the same position. This, in turn, 
scales with the square of the gas particle density, ρ = N/V. Con-
sequently, the pressure is expected to change with the second 
power in the particle density, ρ2: 
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                 pideal → pideal = preal + a$ρ2              (9) 
 

Depending on whether the effective interaction is attractive or 
repulsive, the parameter a is negative or positive, respectively. 
Since the effect of the interaction depends on the energy of the 
particles, i.e., on the temperature T, one expects the quantities a 
and b to be functions of T. However, if these corrections are rela-
tively small, one may instead try to take a and b as constants 
and expects the corrected EOS to be valid in certain limited re-
gions of temperature, pressure, and density.  

 
Approximately then, one expects a real gas to follow an EOS 

equivalent in form to the ideal-gas EOS, but with the effective 
pressure and the effective volume discussed above: 
 

      ( )
2

B

N
p a V Nb Nk T

V

  + ⋅ − = 
  

         (10) 

 
This is the van der Waals Equation. Here, the quantities a 

and b are constants characteristic of the material. The correction 
terms in Equ. (10) are often small compared to the main terms, 
such that the quantity N/V in these terms can be approximated 
by the ideal-gas expression N/V ¡ p/kBT. Then, one derives from 
Equ. (10) the relation 

 

 
2

B2 2

ap N
p(1 )(V Nb) Nk T

p V
+ ⋅ − =  (11) 

and  

          

( )

B

2
B

Nk T
pV b Np

a p
1

k T

= +
⋅

+
⋅  (12) 

 
which is equivalent to the van der Waals equation to first order. 
An expansion of Equ. (12) in terms of powers of the small pa-
rameter a$p/(kBT)2«1 yields a series of the form 

 
  p$ V = NkBT +N[b - a/(kBT)]p + ….  (13) 
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This series is of the 

kind of the virial ex-
pansion of Equ. (7), 
with the first virial co-
efficient 

 
      

B(T) = N[b - a/(kBT)] 
 
The figure illus-

trates this tempera-
ture dependence for 
the 2nd virial coeffi-

cients B(T) of hydrogen (H2) and CO2, BH and Bco2, respec-
tively, per particle.  

 The virial expansion of the van der Waals equation given by 
Equ.(10) has been fitted to experimental data. Therefore, the 
curves in the figure for H2 and CO2 represent accurately the ex-
perimental facts.  

 
From the figure, one observes that for low temperatures, the 

virial coefficient B is negative, as expected for an attractive in-
teraction. Because of an effectively attractive interaction, the 
pressure measured for a real gas is smaller than for an ideal gas. 
For the reasons mentioned previously, the effect is stronger for 
CO2 than for hydrogen. For very high temperatures, the virial co-
efficient B approaches the value of the covolume (per particle) 
b. Here, the attractive part of the interaction does not play a ma-
jor role. The main effect is due to the repulsive core, which de-
creases the volume available to the particles. The van der 
Waals equation also provides expressions for the higher virial 
coefficients. 

Inspecting the van der Waals equation (10) closely, one no-
tices some inconsistencies: As an illustration, the figure below 
displays the van der Waals isotherms p(T,V) for water with the 
parameters a=0.56539 Pa m6 mol-2 and b = 3.1$10-5m3 mol-1 de-
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rived from experimental data. Shown are calculated curves for T 
= 100-700 K. 

 
The isotherms p(V,T=const.) for the very high temperatures 

look almost like the hyperbolas of an ideal gas. But for T = 650K, 
the real-gas isotherm develops a deflection point, and for T < 
650K, these isotherms have an oscillatory behavior: With in-
creasing volume, the pressure decreases, increases, and de-
creases again. For small temperatures and a range of vol-
umes, the pressure even becomes negative for any size-
able volume. This would require the system to collapse, an ef-
fect which is not observed experimentally. Even the predicted 
decrease in pressure with decreasing volume is unphysi-
cal. Such a system would also not be stable under compression.  
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One must, therefore, conclude that the mathematical form of 
Equ. (10) is unrealistic for a real substance, at least for a 
range of temperatures and volumes or pressures. The an-
swer to this problem lies in the fact that, for this range of 
temperatures and volumes, the system is no longer a gas. It has 
undergone, partially or totally, a phase transition. The liq-
uid phase has become energetically more favorable than the gas 
phase. This will be discussed in detail in another section. 
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