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 U N I V E R S I T Y   O F 

ROCHESTER 
DEPARTMENT OF CHEMISTRY 

PChem II              W. Udo Schröder 

 

              Workshop -3d 

                                                           Physical Chemistry II             

Exercises and Homework Set 4 

 

Conceptional and Math Review 

i. Discuss combinatorics, statistics, and probability. See: Information & Probability.  

ii. Sets of random numbers in Excel. Sort random events into discrete bins. CLT  

iii. What is the main difference between a cellular automaton (CA#20) and a random 

walk, each with 2 alternatives/rules? 

iv. Explain the meaning of “occupation probability” and Ergodic Theorem for a one-

dimensional string of cells (=particle states)? Example of 100 particles and 104 

cells? 

v. Discuss probability binomial and Poisson probability distributions: Normalization 

and moments, mean expectations and variance.  

vi. Functions of random variables.  

vii. Series expansion of the exponential ( )
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1.  Random Numbers and Central Limit Theorem 

Test experimentally the validity of the Central Limit Theorem. This theo-

rem  states that the sums ( )
1

N

i
i

S N x
=

=  of large numbers of uniformly dis-

tributed random numbers  ,
i

x i 1 N= −  approach a Gaussian “Normal” dis-

tribution for large N. 

a) Use MS-Excel to generate several (5) instances of the mean expecta-

tion value ( )
1

1 N

N i
i

E x x
N =

=  of random-number sets  0 1
i

x   for N=10.  

b) Generate and record additional data sets ( ) ( ) , 1,...,5
n

N
E x n = for N= 50, 

100,200. 

c) Compare the average values ( ) ( )n

N
n

E x and the spreads in the sets 

( ) ( ) n

N
E x  for N = 10, 50, 100,200. Consider the ratio of variance to 

mean value. 
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2.   Poisson Distribution 

The Poisson distribution for an integer vari-

able m (=0,1,2,..) is defined as

m a1
P(m) a e

m!

−=    where a is a character-

istic of the distribution. 

a) Show that the Poisson distribution is 

normalized. 

b) Use the series expansion of the expo-

nential function to show that a is equal to 

the average expectation value of m, i.e., m a= . 

 

3.  Isotope Separation through Effusion 

Consider a column of volume V and temper-

ature T containing an equilibrated mixture of 

two gases of Nm and NM particles with masses 

m and M, respectively. A simple mode of 

separating the two kinds of gas particles 

uses fractionation with a column of the basic 

design shown in the sketch. The mixture is 

let into the inner chamber and diffuses 

through pinholes in the chamber walls. Since 

the thermal velocities are different for m and 

M, one type migrates (effuses) much more 

readily than the other, one of the substances 

will become enriched in the concentric outer chamber surrounding the 

column. 

a) Calculate the relative separation efficiency 1 M mN N =  for a col-

umn with 103 pinholes of area , where iN  is the rate of particles of 

type i leaving the column. 

b) Can one increase the separation efficiency by increasing or de-

creasing the temperature T of the mixture? 
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3.   Dissolution of a Particle Cluster 

Consider a 2D space spanned by a grid of 

A=50·50 single-particle (s.p.) states (=pixels). 

Initially, the grid contains the configuration of 

one, closely-packed, multi-particle cluster of 

a=10·10 individual, non-interacting particles. In 

time, all particles are capable to reach any of the 

accessible states on the grid, including the origi-

nal states assembled in the cluster.  

a) Calculate the number ( ) 100
C of accessible 

multi-particle cluster states on the grid. 

b) Calculate the number ( ) 99
C  of “cluster-mi-

nus 1 particle” states available on the grid, where 

1 particle has left the cluster and populates any of 

the s.p. states outside the cluster remnant. 

c) Calculate the number ( )
 1  of microstates of 

the final (asymtotic) equilibrium configurations, where the cluster has 

completely dissolved into single particles populating random s.p. 

states on the grid. 

d) Calculate the entropies = S k Ln of the initial and the final configu-

rations associated with the number   of, at least partially, populated 

s.p. states. 

 

 

 
 


